Abstract
Complex algebraic calculations can be performed by reconstructing analytic results from numerical evaluations over finite fields. We describe FiniteFlow, a framework for defining and executing numerical algorithms over finite fields and reconstructing multivariate rational functions. The framework employs computational graphs, known as dataflow graphs, to combine basic building blocks into complex algorithms. This allows to easily implement a wide range of methods over finite fields in high-level languages and computer algebra systems, without being concerned with the low-level details of the numerical implementation. This approach sidesteps the appearance of large intermediate expressions and can be massively parallelized. We present applications to the calculation of multi-loop scattering amplitudes, including the reduction via integration-by-parts identities to master integrals or special functions, the computation of differential equations for Feynman integrals, multi-loop integrand reduction, the decomposition of amplitudes into form factors, and the derivation of integrable symbols from a known alphabet. We also release a proof-of-concept C++ implementation of this framework, with a high-level interface in Mathematica.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett.B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].
T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP12 (2016) 030 [arXiv:1608.01902] [INSPIRE].
G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [INSPIRE].
P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes, JHEP11 (2011) 014 [arXiv:1107.6041] [INSPIRE].
S. Badger, H. Frellesvig and Y. Zhang, Hepta-cuts of two-loop scattering amplitudes, JHEP04 (2012) 055 [arXiv:1202.2019] [INSPIRE].
Y. Zhang, Integrand-level reduction of loop amplitudes by computational algebraic geometry methods, JHEP09 (2012) 042 [arXiv:1205.5707] [INSPIRE].
P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett.B 718 (2012) 173 [arXiv:1205.7087] [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE].
R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP03 (2008) 003 [arXiv:0708.2398] [INSPIRE].
A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in QCD: the N 3f contributions, Phys. Rev.D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP01 (2019) 186 [arXiv:1811.11699] [INSPIRE].
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett.122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].
R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with quartic fundamental colour factor, JHEP02 (2019) 172 [arXiv:1901.02898] [INSPIRE].
J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp anomalous dimension, Phys. Rev. Lett.122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].
A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors in four loop QCD: the N 2f and N qγN fcontributions, Phys. Rev.D 99 (2019) 094014 [arXiv:1902.08208] [INSPIRE].
S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic form of the planar two-loop five-parton scattering amplitudes in QCD, JHEP05 (2019) 084 [arXiv:1904.00945] [INSPIRE].
A. von Manteuffel and R.M. Schabinger, Planar master integrals for four-loop form factors, JHEP05 (2019) 073 [arXiv:1903.06171] [INSPIRE].
S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, arXiv:1905.03733 [INSPIRE].
J. Klappert and F. Lange, Reconstructing rational functions with FireFly, arXiv:1904.00009 [INSPIRE].
M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems software, https://www.tensorflow.org/, (2015).
P.S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings of the fourth ACM symposium on Symbolic and algebraic computation — SYMSAC ′81, ACM Press, U.S.A. (1981).
P.S. Wang, M.J.T. Guy and J.H. Davenport, P -adic reconstruction of rational numbers, ACM SIGSAM Bull.16 (1982) 2.
M. Abramowitz and I. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables, Dover Publications, U.S.A. (1964).
A. Cuyt and W. Shin Lee, Sparse interpolation of multivariate rational functions, Theor. Comput. Sci.412 (2011) 1445.
P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
P. Mastrolia, T. Peraro and A. Primo, Adaptive integrand decomposition in parallel and orthogonal space, JHEP08 (2016) 164 [arXiv:1605.03157] [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc. thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).
D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP01 (2019) 006 [arXiv:1807.11522] [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading poles in the numerical unitarity method at two loops, Phys. Rev.D 95 (2017) 096011 [arXiv:1703.05255] [INSPIRE].
S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].
F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys.B 306 (1988) 759 [INSPIRE].
J. Gluza, K. Kajda and D.A. Kosower, Towards a basis for planar two-loop integrals, Phys. Rev.D 83 (2011) 045012 [arXiv:1009.0472] [INSPIRE].
H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev.D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].
K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev.D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD, JHEP12 (2013) 045 [arXiv:1310.1051] [INSPIRE].
S. Badger, Automating QCD amplitudes with on-shell methods, J. Phys. Conf. Ser.762 (2016) 012057 [arXiv:1605.02172] [INSPIRE].
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
F.C.S. Brown, Multiple zeta values and periods of moduli spaces M 0,n(R), Annales Sci. École Norm. Sup.42 (2009) 371 [math.AG/0606419] [INSPIRE].
In collaboration, Conformal symmetry and Feynman integrals, PoS(LL2018)037 (2018) [arXiv:1807.06020] [INSPIRE].
V. Mitev and Y. Zhang, SymBuild: a package for the computation of integrable symbols in scattering amplitudes, arXiv:1809.05101 [INSPIRE].
N. Möller and T. Granlund, Improved division by invariant integers, IEEE Trans. Comput.60 (2011) 165.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1905.08019
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Peraro, T. FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs. J. High Energ. Phys. 2019, 31 (2019). https://doi.org/10.1007/JHEP07(2019)031
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2019)031