Abstract
High-performance computing architectures face nontrivial data processing challenges, as computational and I/O components further diverge in performance trajectories. For scientific data analysis in particular, methods based on generating heavyweight access acceleration structures, e.g. indexes, are becoming less feasible for ever-increasing dataset sizes. We present ALACRITY, demonstrating the effectiveness of a fused data and index encoding of scientific, floating-point data in generating lightweight data structures amenable to common types of queries used in scientific data analysis. We exploit the representation of floating-point values by extracting significant bytes, using the resulting unique values to bin the remaining data along fixed-precision boundaries. To optimize query processing, we use an inverted index, mapping each generated bin to a list of records contained within, allowing us to optimize query processing with attribute range constraints. Overall, the storage footprint for both index and data is shown to be below numerous configurations of bitmap indexing, while matching or outperforming query performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEEE standard for floating-point arithmetic. IEEE Standard 754-2008 (2008)
Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD 2006, pp. 671–682. ACM, New York (2006)
Anh, V.N., Moffat, A.: Index compression using fixed binary codewords. In: Proceedings of the 15th Australasian Database Conference, ADC 2004, vol. 27, pp. 61–67. Australian Computer Society, Inc., Darlinghurst (2004)
Antoshenkov, G.: Byte-aligned bitmap compression. In: Data Compression Conference, p. 476 (1995)
Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series 131, 273–334 (2000)
Burtscher, M., Ratanaworabhan, P.: High throughput compression of double-precision floating-point data. In: IEEE Data Compression Conference, pp. 293–302 (2007)
Burtscher, M., Ratanaworabhan, P.: FPC: A high-speed compressor for double-precision floating-point data. IEEE Transactions on Computers 58, 18–31 (2009)
Chen, J.H., Choudhary, A., Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.: Terascale direct numerical simulations of turbulent combustion using S3D. Comp. Sci. and Discovery 2(1)
Comer, D.: The ubiquitous B-Tree. ACM Comput. Surv. 11, 121–137 (1979)
Goeman, B., Vandierendonck, H., Bosschere, K.D.: Differential FCM: Increasing value prediction accuracy by improving table usage efficiency. In: Seventh International Symposium on High Performance Computer Architecture, pp. 207–216 (2001)
Graefe, G., Shapiro, L.: Data compression and database performance. In: Proceedings of the 1991 Symposium on Applied Computing, pp. 22–27 (April 1991)
Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and decompression of large n-dimensional scalar fields. Computer Graphics Forum 22, 343–348 (2003)
Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point geometry. Computer-Aided Design 37(8), 869–877 (2005); CAD 2004 Special Issue: Modelling and Geometry Representations for CAD
Iyer, B.R., Wilhite, D.: Data compression support in databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp. 695–704. Morgan Kaufmann Publishers Inc., San Francisco (1994)
Jenkins, J., et al.: Analytics-driven lossless data compression for rapid in-situ indexing, storing, and querying. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 16–30. Springer, Heidelberg (2012)
Ku, S., Chang, C., Diamond, P.: Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic Tokamak geometry. Nuclear Fusion 49(11), 115021 (2009)
Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Transactions on Visualization and Computer Graphics 12, 1245–1250 (2006)
Schendel, E.R., Jin, Y., Shah, N., Chen, J., Chang, C., Ku, S.-H., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N.F.: ISOBAR preconditioner for effective and high-throughput lossless data compression. In: Proceedings of the 28th International Conference on Data Engineering, ICDE 2012. IEEE (2012)
Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans. Database Syst. 32 (2007)
Wang, W.X., Lin, Z., Tang, W.M., Lee, W.W., Ethier, S., Lewandowski, J.L.V., Rewoldt, G., Hahm, T.S., Manickam, J.: Gyro-kinetic simulation of global turbulent transport properties in Tokamak experiments. Physics of Plasmas 13(9), 092505 (2006)
Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)
Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edn. Morgan Kaufmann (1999)
Wu, K.: Fastbit: an efficient indexing technology for accelerating data-intensive science. Journal of Physics: Conference Series 16, 556 (2005)
Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-Michel, E., Geddes, C., Gu, J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer, P., Otoo, E., Perevoztchikov, V., Poskanzer, A., Prabhat, Rubel, O., Shoshani, A., Sim, A., Stockinger, K., Weber, G., Zhang, W.-M.: FastBit: interactively searching massive data. Journal of Physics: Conference Series 180(1), 012053 (2009)
Wu, K., Otoo, E., Shoshani, A.: On the performance of bitmap indices for high cardinality attributes. In: Proc. of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, vol. 30, pp. 24–35 (2004)
Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31, 1–38 (2006)
Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 401–410. ACM, New York (2009)
Yiannakis, S., Smith, J.E.: The predictability of data values. In: Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 30, pp. 248–258. IEEE Computer Society, Washington, DC (1997)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2) (July 2006)
Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, pp. 59–71. IEEE Computer Society, Washington, DC (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jenkins, J. et al. (2013). ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying. In: Hameurlain, A., Küng, J., Wagner, R., Liddle, S.W., Schewe, KD., Zhou, X. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems X. Lecture Notes in Computer Science, vol 8220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41221-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-41221-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41220-2
Online ISBN: 978-3-642-41221-9
eBook Packages: Computer ScienceComputer Science (R0)