Nothing Special   »   [go: up one dir, main page]

Skip to main content

ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying

  • Chapter
Transactions on Large-Scale Data- and Knowledge-Centered Systems X

Abstract

High-performance computing architectures face nontrivial data processing challenges, as computational and I/O components further diverge in performance trajectories. For scientific data analysis in particular, methods based on generating heavyweight access acceleration structures, e.g. indexes, are becoming less feasible for ever-increasing dataset sizes. We present ALACRITY, demonstrating the effectiveness of a fused data and index encoding of scientific, floating-point data in generating lightweight data structures amenable to common types of queries used in scientific data analysis. We exploit the representation of floating-point values by extracting significant bytes, using the resulting unique values to bin the remaining data along fixed-precision boundaries. To optimize query processing, we use an inverted index, mapping each generated bin to a list of records contained within, allowing us to optimize query processing with attribute range constraints. Overall, the storage footprint for both index and data is shown to be below numerous configurations of bitmap indexing, while matching or outperforming query performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IEEE standard for floating-point arithmetic. IEEE Standard 754-2008 (2008)

    Google Scholar 

  2. Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD 2006, pp. 671–682. ACM, New York (2006)

    Chapter  Google Scholar 

  3. Anh, V.N., Moffat, A.: Index compression using fixed binary codewords. In: Proceedings of the 15th Australasian Database Conference, ADC 2004, vol. 27, pp. 61–67. Australian Computer Society, Inc., Darlinghurst (2004)

    Google Scholar 

  4. Antoshenkov, G.: Byte-aligned bitmap compression. In: Data Compression Conference, p. 476 (1995)

    Google Scholar 

  5. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement Series 131, 273–334 (2000)

    Article  Google Scholar 

  6. Burtscher, M., Ratanaworabhan, P.: High throughput compression of double-precision floating-point data. In: IEEE Data Compression Conference, pp. 293–302 (2007)

    Google Scholar 

  7. Burtscher, M., Ratanaworabhan, P.: FPC: A high-speed compressor for double-precision floating-point data. IEEE Transactions on Computers 58, 18–31 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chen, J.H., Choudhary, A., Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W., Ma, K., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.: Terascale direct numerical simulations of turbulent combustion using S3D. Comp. Sci. and Discovery 2(1)

    Google Scholar 

  9. Comer, D.: The ubiquitous B-Tree. ACM Comput. Surv. 11, 121–137 (1979)

    Article  MATH  Google Scholar 

  10. Goeman, B., Vandierendonck, H., Bosschere, K.D.: Differential FCM: Increasing value prediction accuracy by improving table usage efficiency. In: Seventh International Symposium on High Performance Computer Architecture, pp. 207–216 (2001)

    Google Scholar 

  11. Graefe, G., Shapiro, L.: Data compression and database performance. In: Proceedings of the 1991 Symposium on Applied Computing, pp. 22–27 (April 1991)

    Google Scholar 

  12. Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and decompression of large n-dimensional scalar fields. Computer Graphics Forum 22, 343–348 (2003)

    Article  Google Scholar 

  13. Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point geometry. Computer-Aided Design 37(8), 869–877 (2005); CAD 2004 Special Issue: Modelling and Geometry Representations for CAD

    Google Scholar 

  14. Iyer, B.R., Wilhite, D.: Data compression support in databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp. 695–704. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

  15. Jenkins, J., et al.: Analytics-driven lossless data compression for rapid in-situ indexing, storing, and querying. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 16–30. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Ku, S., Chang, C., Diamond, P.: Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic Tokamak geometry. Nuclear Fusion 49(11), 115021 (2009)

    Article  Google Scholar 

  17. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Transactions on Visualization and Computer Graphics 12, 1245–1250 (2006)

    Article  Google Scholar 

  18. Schendel, E.R., Jin, Y., Shah, N., Chen, J., Chang, C., Ku, S.-H., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N.F.: ISOBAR preconditioner for effective and high-throughput lossless data compression. In: Proceedings of the 28th International Conference on Data Engineering, ICDE 2012. IEEE (2012)

    Google Scholar 

  19. Sinha, R.R., Winslett, M.: Multi-resolution bitmap indexes for scientific data. ACM Trans. Database Syst. 32 (2007)

    Google Scholar 

  20. Wang, W.X., Lin, Z., Tang, W.M., Lee, W.W., Ethier, S., Lewandowski, J.L.V., Rewoldt, G., Hahm, T.S., Manickam, J.: Gyro-kinetic simulation of global turbulent transport properties in Tokamak experiments. Physics of Plasmas 13(9), 092505 (2006)

    Google Scholar 

  21. Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)

    Article  Google Scholar 

  22. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd edn. Morgan Kaufmann (1999)

    Google Scholar 

  23. Wu, K.: Fastbit: an efficient indexing technology for accelerating data-intensive science. Journal of Physics: Conference Series 16, 556 (2005)

    Article  Google Scholar 

  24. Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-Michel, E., Geddes, C., Gu, J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer, P., Otoo, E., Perevoztchikov, V., Poskanzer, A., Prabhat, Rubel, O., Shoshani, A., Sim, A., Stockinger, K., Weber, G., Zhang, W.-M.: FastBit: interactively searching massive data. Journal of Physics: Conference Series 180(1), 012053 (2009)

    Google Scholar 

  25. Wu, K., Otoo, E., Shoshani, A.: On the performance of bitmap indices for high cardinality attributes. In: Proc. of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, vol. 30, pp. 24–35 (2004)

    Google Scholar 

  26. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31, 1–38 (2006)

    Google Scholar 

  27. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 401–410. ACM, New York (2009)

    Chapter  Google Scholar 

  28. Yiannakis, S., Smith, J.E.: The predictability of data values. In: Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 30, pp. 248–258. IEEE Computer Society, Washington, DC (1997)

    Google Scholar 

  29. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys 38(2) (July 2006)

    Google Scholar 

  30. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, pp. 59–71. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jenkins, J. et al. (2013). ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying. In: Hameurlain, A., Küng, J., Wagner, R., Liddle, S.W., Schewe, KD., Zhou, X. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems X. Lecture Notes in Computer Science, vol 8220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41221-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41221-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41220-2

  • Online ISBN: 978-3-642-41221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics