Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Algorithm for Learning with Semi-bandit Feedback

  • Conference paper
Algorithmic Learning Theory (ALT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8139))

Included in the following conference series:

Abstract

We consider the problem of online combinatorial optimization under semi-bandit feedback. The goal of the learner is to sequentially select its actions from a combinatorial decision set so as to minimize its cumulative loss. We propose a learning algorithm for this problem based on combining the Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss estimation procedure called Geometric Resampling (GR). Contrary to previous solutions, the resulting algorithm can be efficiently implemented for any decision set where efficient offline combinatorial optimization is possible at all. Assuming that the elements of the decision set can be described with d-dimensional binary vectors with at most m non-zero entries, we show that the expected regret of our algorithm after T rounds is \(O(m\sqrt{dT\log d})\). As a side result, we also improve the best known regret bounds for FPL, in the full information setting to \(O(m^{3/2}\sqrt{T\log d})\), gaining a factor of \(\sqrt{d/m}\) over previous bounds for this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allenberg, C., Auer, P., Györfi, L., Ottucsák, G.: Hannan consistency in on-line learning in case of unbounded losses under partial monitoring. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.) ALT 2006. LNCS (LNAI), vol. 4264, pp. 229–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Audibert, J.-Y., Bubeck, S.: Regret bounds and minimax policies under partial monitoring. Journal of Machine Learning Research 11, 2635–2686 (2010)

    MathSciNet  Google Scholar 

  3. Audibert, J.Y., Bubeck, S., Lugosi, G.: Regret in online combinatorial optimization. To appear in Mathematics of Operations Research (2013)

    Google Scholar 

  4. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Kleinberg, R.D.: Adaptive routing with end-to-end feedback: distributed learning and geometric approaches. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 45–53 (2004)

    Google Scholar 

  6. Bubeck, S., Cesa-Bianchi, N., Kakade, S.M.: Towards minimax policies for online linear optimization with bandit feedback. In: Proceedings of the 25th Annual Conference on Learning Theory (COLT), pp. 1–14 (2012)

    Google Scholar 

  7. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  8. Cesa-Bianchi, N., Lugosi, G.: Combinatorial bandits. Journal of Computer and System Sciences 78, 1404–1422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dani, V., Hayes, T., Kakade, S.: The price of bandit information for online optimization. In: Advances in Neural Information Processing Systems (NIPS), vol. 20, pp. 345–352 (2008)

    Google Scholar 

  10. György, A., Linder, T., Lugosi, G., Ottucsák, G.: The on-line shortest path problem under partial monitoring. Journal of Machine Learning Research 8, 2369–2403 (2007)

    MATH  Google Scholar 

  11. Hannan, J.: Approximation to Bayes risk in repeated play. Contributions to the Theory of Games 3, 97–139 (1957)

    Google Scholar 

  12. Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. Journal of Computer and System Sciences 71, 291–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koolen, W., Warmuth, M., Kivinen, J.: Hedging structured concepts. In: Proceedings of the 23rd Annual Conference on Learning Theory (COLT), pp. 93–105 (2010)

    Google Scholar 

  14. McMahan, H.B., Blum, A.: Online geometric optimization in the bandit setting against an adaptive adversary. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 109–123. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Poland, J.: FPL analysis for adaptive bandits. In: Lupanov, O.B., Kasim-Zade, O.M., Chaskin, A.V., Steinhöfel, K. (eds.) SAGA 2005. LNCS, vol. 3777, pp. 58–69. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Suehiro, D., Hatano, K., Kijima, S., Takimoto, E., Nagano, K.: Online prediction under submodular constraints. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 260–274. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Takimoto, E., Warmuth, M.: Paths kernels and multiplicative updates. Journal of Machine Learning Research 4, 773–818 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neu, G., Bartók, G. (2013). An Efficient Algorithm for Learning with Semi-bandit Feedback. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40935-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40934-9

  • Online ISBN: 978-3-642-40935-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics