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Abstract. We consider the problem of online combinatorial optimiza-
tion under semi-bandit feedback. The goal of the learner is to sequentially
select its actions from a combinatorial decision set so as to minimize
its cumulative loss. We propose a learning algorithm for this problem
based on combining the Follow-the-Perturbed-Leader (FPL) prediction
method with a novel loss estimation procedure called Geometric Resam-
pling (GR). Contrary to previous solutions, the resulting algorithm can
be efficiently implemented for any decision set where efficient offline com-
binatorial optimization is possible at all. Assuming that the elements of
the decision set can be described with d-dimensional binary vectors with
at most m non-zero entries, we show that the expected regret of our algo-
rithm after T rounds is O(m

√
dT log d). As a side result, we also improve

the best known regret bounds for FPL in the full information setting to
O(m3/2√T log d), gaining a factor of

√
d/m over previous bounds for

this algorithm.
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1 Introduction

In this paper, we consider a special case of online linear optimization known
as online combinatorial optimization (see Figure 1). In every time step t =
1, 2, . . . , T of this sequential decision problem, the learner chooses an action Vt

from the finite action set S ⊆ {0, 1}d, where ‖v‖1 ≤ m holds for all v ∈ S. At
the same time, the environment fixes a loss vector �t ∈ [0, 1]d and the learner suf-
fers loss V �

t �t. We allow the loss vector �t to depend on the previous decisions
V1, . . . ,Vt−1 made by the learner, that is, we consider non-oblivious environ-

ments. The goal of the learner is to minimize the cumulative loss
∑T

t=1 V
�
t �t.

Then, the performance of the learner is measured in terms of the total expected
regret

RT = max
v∈S

E

[
T∑

t=1

(Vt − v)
�
�t

]

= E

[
T∑

t=1

V �
t �t

]

−min
v∈S

E

[
T∑

t=1

v��t

]

, (1)
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Parameters: set of decision vectors S = {v(1),v(2), . . . ,v(N)} ⊆ {0, 1}d satisfy-
ing ‖v‖1 ≤ m for all v ∈ S , number of rounds T ;
For all t = 1, 2, . . . , T , repeat

1. The learner chooses a probability distribution pt over {1, 2, . . . , N}.
2. The learner draws an action It randomly according to pt. Consequently, the

learner plays decision vector Vt = v(It).
3. The environment chooses loss vector �t.
4. The learner suffers loss V �

t �t.
5. The learner observes some feedback based on �t and Vt.

Fig. 1. The protocol of online combinatorial optimization

Note that, as indicated in Figure 1, the learner chooses its actions randomly,
hence the expectation.

The framework described above is general enough to accommodate a number
of interesting problem instances such as path planning, ranking and matching
problems, finding minimum-weight spanning trees and cut sets. Accordingly,
different versions of this general learning problem have drawn considerable at-
tention in the past few years. These versions differ in the amount of information
made available to the learner after each round t. In the simplest setting, called
the full-information setting, it is assumed that the learner gets to observe the
loss vector �t regardless of the choice of Vt. However, this assumption does not
hold for many practical applications, so it is more interesting to study the prob-
lem under partial information, meaning that the learner only gets some limited
feedback based on its own decision. In particular, in some problems it is realis-
tic to assume that the learner observes the vector (Vt,1�t,1, . . . , Vt,d�t,d), where
Vt,i and �t,i are the ith components of the vectors Vt and �t, respectively. This
information scheme is called semi-bandit information. An even more challenging
variant is the full bandit scheme where all the learner observes after time t is its
own loss V �

t �t.
The most well-known instance of our problem is the (adversarial)multi-armed

bandit problem considered in the seminal paper of Auer et al. [4]: in each round of
this problem, the learner has to select one of N arms and minimize regret against
the best fixed arm, while only observing the losses of the chosen arm. In our frame-
work, this setting corresponds to setting d = N and m = 1, and assuming either
full bandit or semi-bandit feedback. Among other contributions concerning this
problem, Auer et al. propose an algorithm called Exp3 (Exploration and Exploita-

tion using Exponential weights) based on constructing loss estimates �̂t,i for each
component of the loss vector and playing arm i with probability proportional to
exp(−η∑t−1

s=1 �̂s,i) at time t (η > 0)1. This algorithm is known as theExponentially
Weighted Average (EWA) forecaster in the full information case. Besides proving

1 In fact, Auer et al. mix the resulting distribution with a uniform distribution over the
arms with probability γ > 0. However, this modification is not needed when one is
concerned with the total expected regret.


