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Abstract. We consider the problem of online combinatorial optimiza-
tion under semi-bandit feedback. The goal of the learner is to sequentially
select its actions from a combinatorial decision set so as to minimize
its cumulative loss. We propose a learning algorithm for this problem
based on combining the Follow-the-Perturbed-Leader (FPL) prediction
method with a novel loss estimation procedure called Geometric Resam-
pling (GR). Contrary to previous solutions, the resulting algorithm can
be efficiently implemented for any decision set where efficient offline com-
binatorial optimization is possible at all. Assuming that the elements of
the decision set can be described with d-dimensional binary vectors with
at most m non-zero entries, we show that the expected regret of our algo-
rithm after T rounds is O(m+/dT log d). As a side result, we also improve
the best known regret bounds for FPL in the full information setting to
O(m*/?\/Tlogd), gaining a factor of y/d/m over previous bounds for
this algorithm.
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1 Introduction

In this paper, we consider a special case of online linear optimization known
as online combinatorial optimization (see Figure [[). In every time step ¢t =
1,2,...,T of this sequential decision problem, the learner chooses an action V;
from the finite action set S C {0, 1}, where |lv]]; < m holds for all v € S. At
the same time, the environment fixes a loss vector £; € [0,1]¢ and the learner suf-
fers loss V" £;. We allow the loss vector £; to depend on the previous decisions
Vi,...,Vi_1 made by the learner, that is, we consider non-oblivious environ-
ments. The goal of the learner is to minimize the cumulative loss ZZ;I \ /AN
Then, the performance of the learner is measured in terms of the total expected
regret
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Parameters: set of decision vectors S = {v(1),v(2),...,v(N)} C {0,1}¢ satisfy-
ing |lv||; < m for all v € S, number of rounds T
For allt=1,2,...,T, repeat

1. The learner chooses a probability distribution p: over {1,2,...,N}.

2. The learner draws an action I; randomly according to p:. Consequently, the
learner plays decision vector V; = v(Iy).

3. The environment chooses loss vector £;.

The learner suffers loss V,;Tﬁt.

5. The learner observes some feedback based on £; and V;.

=

Fig. 1. The protocol of online combinatorial optimization

Note that, as indicated in Figure [Il the learner chooses its actions randomly,
hence the expectation.

The framework described above is general enough to accommodate a number
of interesting problem instances such as path planning, ranking and matching
problems, finding minimum-weight spanning trees and cut sets. Accordingly,
different versions of this general learning problem have drawn considerable at-
tention in the past few years. These versions differ in the amount of information
made available to the learner after each round ¢. In the simplest setting, called
the full-information setting, it is assumed that the learner gets to observe the
loss vector £; regardless of the choice of V;. However, this assumption does not
hold for many practical applications, so it is more interesting to study the prob-
lem under partial information, meaning that the learner only gets some limited
feedback based on its own decision. In particular, in some problems it is realis-
tic to assume that the learner observes the vector (Vi 14:1,. .., Vs dlt,q), where
Vi and £, ; are the i*™ components of the vectors V; and €, respectively. This
information scheme is called semi-bandit information. An even more challenging
variant is the full bandit scheme where all the learner observes after time ¢ is its
own loss V,"¢;.

The most well-known instance of our problem is the (adversarial) multi-armed
bandit problem considered in the seminal paper of Auer et al. [4]: in each round of
this problem, the learner has to select one of N arms and minimize regret against
the best fixed arm, while only observing the losses of the chosen arm. In our frame-
work, this setting corresponds to setting d = IV and m = 1, and assuming either
full bandit or semi-bandit feedback. Among other contributions concerning this
problem,|Auer et al| propose an algorithm called Exp3 (Exploration and Exploita-
tion using Exponential weights) based on constructing loss estimates lftvi for each
component of the loss vector and playing arm ¢ with probability proportional to
exp(—n Zz;i ls.;) at time t () > 0)1. This algorithm is known as the Exponentially
Weighted Average (EWA) forecaster in the full information case. Besides proving

! In fact, |Auer et all mix the resulting distribution with a uniform distribution over the
arms with probability v > 0. However, this modification is not needed when one is
concerned with the total expected regret.



