Nothing Special   »   [go: up one dir, main page]

Skip to main content

Numerical Approximation of Rare Event Probabilities in Biochemically Reacting Systems

  • Conference paper
Computational Methods in Systems Biology (CMSB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8130))

Included in the following conference series:

Abstract

In stochastic biochemically reacting systems, certain rare events can cause serious consequences, which makes their probabilities important to analyze. We solve the chemical master equation using a four-stage fourth order Runge-Kutta integration scheme in combination with a guided state space exploration and a dynamical state space truncation in order to approximate the unknown probabilities of rare but important events numerically. The guided state space exploration biases the system parameters such that the rare event of interest becomes less rare. For each numerical integration step, the portion of the state space to be truncated is then dynamically obtained using information from the biased model and the numerical integration of the unbiased model is conducted only on the remaining significant part of the state space. The efficiency and the accuracy of our method are studied through a benchmark model that recently received considerable attention in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, W.J.: Continuous-time Markov Chains: An Applications-Oriented Approach. Springer (1991)

    Google Scholar 

  2. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)

    Google Scholar 

  3. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM (1998)

    Google Scholar 

  4. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer (2007)

    Google Scholar 

  5. Bharucha-Reid, A.T.: Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill (1960)

    Google Scholar 

  6. Blake, W.J., Kaern, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  Google Scholar 

  7. Bucklew, J.A.: Introduction to Rare Event Simulation. Springer (2004)

    Google Scholar 

  8. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. John Wiley & Sons (2008)

    Google Scholar 

  9. Daigle Jr., B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of rare event probabilities in biochemical systems. Journal of Chemical Physics 134, 044110 (2011)

    Article  Google Scholar 

  10. Delbrück, M.: Statistical fluctuations in autocatalytic reactions. Journal of Chemical Physics 8, 120–124 (1940)

    Article  Google Scholar 

  11. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Springer (2002)

    Google Scholar 

  12. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, 2nd edn. John Wiley & Sons (2005)

    Google Scholar 

  13. Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)

    Article  Google Scholar 

  14. Gillespie, D.T.: A general method for numerically simulating the time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  15. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 71(25), 2340–2361 (1977)

    Article  Google Scholar 

  16. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  17. Gillespie, D.T., Roh, M., Petzold, L.R.: Refining the weighted stochastic simulation algorithm. Journal of Chemical Physics 130, 174103 (2009)

    Article  Google Scholar 

  18. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press (1975)

    Google Scholar 

  19. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. John Wiley & Sons (2011)

    Google Scholar 

  20. Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. Journal of Chemical Physics 57(7), 2976–2978 (1972)

    Article  Google Scholar 

  21. Kuwahara, H., Mura, I.: An efficient and exact stochastic simulation method to analyze rare events in biochemical systems. Journal of Chemical Physics 129, 165101 (2008)

    Article  Google Scholar 

  22. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proceedings of the National Academy of Science USA 94, 814–819 (1997)

    Article  Google Scholar 

  23. McAdams, H.H., Arkin, A.: It’s a noisy business? Trends in Genetics 15(2), 65–69 (1999)

    Article  Google Scholar 

  24. McQuarrie, D.A.: Stochastic approach to chemical kinetics. Journal of Applied Probability 4, 413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mikeev, L., Sandmann, W., Wolf, V.: Efficient calculation of rare event probabilities in Markovian queueing networks. In: Proceedings of the 5th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS, pp. 186–196 (2011)

    Google Scholar 

  26. Oppenheim, I., Shuler, K.E., Weiss, G.H.: Stochastic and deterministic formulation of chemical rate equations. Journal of Chemical Physics 50(1), 460–466 (1969)

    Article  Google Scholar 

  27. Roh, M.K., Daigle Jr., B.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly weighted stochastic simulation algorithm for automatic characterization of stochastic biochemical rare events. Journal of Chemical Physics 135, 234108 (2011)

    Article  Google Scholar 

  28. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods. John Wiley & Sons (2009)

    Google Scholar 

  29. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer (2004)

    Google Scholar 

  30. Samoilov, M., Plyasunov, S., Arkin, A.P.: Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc. Natl. Acad. Sci. USA 102(7), 2310–2315 (2005)

    Article  Google Scholar 

  31. Sandmann, W.: Rare event simulation methodologies in systems biology. In: Rubino, G., Tuffin, B. (eds.) Rare Event Simulation Using Monte Carlo Methods, ch. 11, pp. 243–265. John Wiley & Sons (2009)

    Google Scholar 

  32. Sandmann, W.: Sequential estimation for prescribed statistical accuracy in stochastic simulation of biological systems. Mathematical Biosciences 221(1), 43–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Singer, K.: Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. Journal of the Royal Statistical Society, Series B 15(1), 92–106 (1953)

    MATH  Google Scholar 

  34. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  35. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press (1995)

    Google Scholar 

  36. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proceedings of the National Academy of Science USA 98(15), 8614–8619 (2001)

    Article  Google Scholar 

  37. van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, North-Holland (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mikeev, L., Sandmann, W., Wolf, V. (2013). Numerical Approximation of Rare Event Probabilities in Biochemically Reacting Systems. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics