Nothing Special   »   [go: up one dir, main page]

Skip to main content

Revisiting Loss-Specific Training of Filter-Based MRFs for Image Restoration

  • Conference paper
Pattern Recognition (GCPR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8142))

Included in the following conference series:

Abstract

It is now well known that Markov random fields (MRFs) are particularly effective for modeling image priors in low-level vision. Recent years have seen the emergence of two main approaches for learning the parameters in MRFs: (1) probabilistic learning using sampling-based algorithms and (2) loss-specific training based on MAP estimate. After investigating existing training approaches, it turns out that the performance of the loss-specific training has been significantly underestimated in existing work. In this paper, we revisit this approach and use techniques from bi-level optimization to solve it. We show that we can get a substantial gain in the final performance by solving the lower-level problem in the bi-level framework with high accuracy using our newly proposed algorithm. As a result, our trained model is on par with highly specialized image denoising algorithms and clearly outperforms probabilistically trained MRF models. Our findings suggest that for the loss-specific training scheme, solving the lower-level problem with higher accuracy is beneficial. Our trained model comes along with the additional advantage, that inference is extremely efficient. Our GPU-based implementation takes less than 1s to produce state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://gpu4vision.icg.tugraz.at/

  2. Barbu, A.: Training an active random field for real-time image denoising. IEEE Trans. on Image Proc. 18(11), 2451–2462 (2009)

    Article  MathSciNet  Google Scholar 

  3. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals OR 153(1), 235–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. on Image Proc. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  5. Domke, J.: Generic methods for optimization-based modeling. Journal of Machine Learning Research - Proceedings Track 22, 318–326 (2012)

    Google Scholar 

  6. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Image Proc. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  7. Gao, Q., Roth, S.: How well do filter-based MRFs model natural images? In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM and OAGM 2012. LNCS, vol. 7476, pp. 62–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1771–1800 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, J., Mumford, D.: Statistics of natural images and models. In: CVPR, Fort Collins, CO, USA, pp. 541–547 (1999)

    Google Scholar 

  10. Jancsary, J., Nowozin, S., Rother, C.: Loss-specific training of non-parametric image restoration models: A new state of the art. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 112–125. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical Programming 45(1), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, pp. 2272–2279 (2009)

    Google Scholar 

  13. Peyré, G., Fadili, J.: Learning analysis sparsity priors. In: Proc. of Sampta 2011 (2011), http://hal.archives-ouvertes.fr/hal-00542016/

  14. Roth, S., Black, M.J.: Fields of experts. International Journal of Computer Vision 82(2), 205–229 (2009)

    Article  Google Scholar 

  15. Samuel, K.G.G., Tappen, M.: Learning optimized MAP estimates in continuously-valued MRF models. In: CVPR (2009)

    Google Scholar 

  16. Schmidt, U., Gao, Q., Roth, S.: A generative perspective on MRFs in low-level vision. In: CVPR, pp. 1751–1758 (2010)

    Google Scholar 

  17. Schmidt, U., Schelten, K., Roth, S.: Bayesian deblurring with integrated noise estimation. In: CVPR, pp. 2625–2632 (2011)

    Google Scholar 

  18. Tappen, M.F., Liu, C., Adelson, E.H., Freeman, W.T.: Learning gaussian conditional random fields for low-level vision. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  19. Tappen, M.F.: Utilizing variational optimization to learn markov random fields. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  20. Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: CVPR (2007)

    Google Scholar 

  21. Zhang, H., Zhang, Y., Li, H., Huang, T.S.: Generative bayesian image super resolution with natural image prior. IEEE Trans. on Image Proc. 21(9), 4054–4067 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV, pp. 479–486 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Y., Pock, T., Ranftl, R., Bischof, H. (2013). Revisiting Loss-Specific Training of Filter-Based MRFs for Image Restoration. In: Weickert, J., Hein, M., Schiele, B. (eds) Pattern Recognition. GCPR 2013. Lecture Notes in Computer Science, vol 8142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40602-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40602-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40601-0

  • Online ISBN: 978-3-642-40602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics