Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

This paper tackles the intricate challenge of object removal to update the radiance field using the 3D Gaussian Splatting. The main challenges of this task lie in the preservation of geometric consistency and the maintenance of texture coherence in the presence of the substantial discrete nature of Gaussian primitives. We introduce a robust framework specifically designed to overcome these obstacles. The key insight of our approach is the enhancement of information exchange among visible and invisible areas, facilitating content restoration in terms of both geometry and texture. Our methodology begins with optimizing the positioning of Gaussian primitives to improve geometric consistency across both removed and visible areas, guided by an online registration process informed by monocular depth estimation. Following this, we employ a novel feature propagation mechanism to bolster texture coherence, leveraging a cross-attention design that bridges sampling Gaussians from both uncertain and certain areas. This innovative approach significantly refines the texture coherence within the final radiance field. Extensive experiments validate that our method not only elevates the quality of novel view synthesis for scenes undergoing object removal but also showcases notable efficiency gains in training and rendering speeds. Project Page: https://w-ted.github.io/publications/gscream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: MIP-Nerf 360: unbounded anti-aliased neural radiance fields. In: CVPR (2022)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: ZIP-Nerf: Anti-aliased grid-based neural radiance fields. In: ICCV (2023)

    Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000)

    Google Scholar 

  4. Cen, J., et al.: Segment anything in 3D with nerfs. In: NeurIPS (2023)

    Google Scholar 

  5. Chen, G., Wang, W.: A survey on 3D gaussian splatting. arXiv preprint arXiv:2401.03890 (2024)

  6. Chen, Y., et al.: Gaussianeditor: swift and controllable 3D editing with gaussian splatting. In: CVPR (2024)

    Google Scholar 

  7. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: MobileNeRF: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: CVPR (2023)

    Google Scholar 

  8. Cheng, H.K., Tai, Y.W., Tang, C.K.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. In: NeurIPS (2021)

    Google Scholar 

  9. Dai, A., Diller, C., Nießner, M.: SG-NN: sparse generative neural networks for self-supervised scene completion of RGB-D scans. In: CVPR (2020)

    Google Scholar 

  10. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: CVPR (2017)

    Google Scholar 

  11. Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., Nießner, M.: Scancomplete: large-scale scene completion and semantic segmentation for 3D scans. In: CVPR (2018)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  13. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing (2006)

    Google Scholar 

  14. Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Repurposing diffusion-based image generators for monocular depth estimation. In: CVPR (2024)

    Google Scholar 

  15. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ToG (2023)

    Google Scholar 

  16. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. IJCV (2000)

    Google Scholar 

  17. Liu, H.K., Shen, I., Chen, B.Y., et al.: NeRF-in: free-form nerf inpainting with RGB-D priors. arXiv preprint arXiv:2206.04901 (2022)

  18. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. TOG (2019)

    Google Scholar 

  19. Lu, T., et al.: Scaffold-GS: structured 3D gaussians for view-adaptive rendering. In: CVPR (2024)

    Google Scholar 

  20. Max, N.: Optical models for direct volume rendering. TVCG (1995)

    Google Scholar 

  21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM (2021)

    Google Scholar 

  22. Mirzaei, A., et al.: Reference-guided controllable inpainting of neural radiance fields. In: ICCV (2023)

    Google Scholar 

  23. Mirzaei, A., et al.: Spin-NeRF: multiview segmentation and perceptual inpainting with neural radiance fields. In: CVPR (2023)

    Google Scholar 

  24. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ToG (2022)

    Google Scholar 

  25. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepsDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  26. Reiser, C., et al.: MERF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. TOG (2023)

    Google Scholar 

  27. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  28. RunwayML: Stable diffusion (2021). https://huggingface.co/runwayml/stable-diffusion-inpainting

  29. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  30. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. IJCV (1999)

    Google Scholar 

  31. Shih, M.L., Su, S.Y., Kopf, J., Huang, J.B.: 3D photography using context-aware layered depth inpainting. In: CVPR (2020)

    Google Scholar 

  32. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: learning persistent 3d feature embeddings. In: CVPR (2019)

    Google Scholar 

  33. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)

    Google Scholar 

  34. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: NeurIPS (2020)

    Google Scholar 

  35. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  36. Wang, D., Zhang, T., Abboud, A., Süsstrunk, S.: Inpaintnerf360: text-guided 3D inpainting on unbounded neural radiance fields. In: CVPR (2024)

    Google Scholar 

  37. Wang, Q., et al.: Ibrnet: learning multi-view image-based rendering. In: CVPR (2021)

    Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP (2004)

    Google Scholar 

  39. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 (2003)

    Google Scholar 

  40. Weder, S., et al.: Removing objects from neural radiance fields. In: CVPR (2023)

    Google Scholar 

  41. Yin, Y., Fu, Z., Yang, F., Lin, G.: Or-NeRF: object removing from 3D scenes guided by multiview segmentation with neural radiance fields. arXiv preprint arXiv:2305.10503 (2023)

  42. Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: MonoSDF: exploring monocular geometric cues for neural implicit surface reconstruction. In: NeurIPS (2022)

    Google Scholar 

  43. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  44. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: EWA volume splatting. In: VIS (2001)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Early Career Scheme of the Research Grants Council (RGC) of the Hong Kong SAR under grant No. 26202321, SAIL Research Project, HKUST-Zeekr Collaborative Research Fund, HKUST-WeBank Joint Lab Project, and Tencent Rhino-Bird Focused Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2522 KB)

Supplementary material 2 (mp4 91967 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wu, Q., Zhang, G., Xu, D. (2025). Learning 3D Geometry and Feature Consistent Gaussian Splatting for Object Removal. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72646-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72645-3

  • Online ISBN: 978-3-031-72646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics