Abstract
The interval-valued intuitionistic fuzzy implications which are generated from interval-valued fuzzy implications and coimplications and from K-operators are introduced, extending the main properties of fuzzy implication and exploring the class of interval-valued intuitionistic S-implications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.: Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, Heilderberg (1999)
Baczyński, M.: Residual Implications Revisited, Notes on the Smets-Magrez Theorem. Fuzzy Sets and Systems 145(2), 267–277 (2004)
Bedregal, B., Takahashi, A.: The Best Interval Representation of T-Norms and Automorphisms. Fuzzy Sets and Systems 157(24), 3220–3230 (2006)
Bedregal, B., Takahashi, A.: Interval-Valued Versions of T-conorms, Fuzzy Negations and Fuzzy Implications. In: IEEE Proc. of the Int. Conf. on Fuzzy Systems, pp. 1981–1987. IEEE Press, Vancouver (2006)
Bedregal, B., Dimuro, G., Santiago, R., Reiser, R.: On Interval Fuzzy S-implications. Inf. Sci. 180(8), 1373–1389 (2010)
Bustince, H., Barrenechea, E., Pagola, M.: Generation of Interval-valued Fuzzy and Atanassov’s Intuitionistic Fuzzy Connectives from Fuzzy Connectives and from K α Operators: Law of Conjunctions and Disjunctions, Amplitude. Int. J. Intell. Syst. 23(6), 680–714 (2008)
Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Publisher, Dordrecht (1994)
Cornelis, C., Deschrijver, G., Kerre, E.: Implications in Intuitionistic Fuzzy and Interval-Valued Fuzzy Set Theory: Construction, Classification and Application. Int. J. of Approximate Reasoning 35, 55–95 (2004)
Hickey, T., Ju, Q., Emdem, M.: Interval Arithmetic: from Principles to Implementation. J. of the ACM 48(5), 1038–1068 (2001)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
Reiser, R.H.S., Bedregal, B.R.C.: Generation of Interval-Valued Fuzzy Implications from K α Operators. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 41–49. Springer, Heidelberg (2011)
Reiser, R., Bedregal, B., Reis, G.: Interval-Valued Fuzzy Coimplications. Journal of Computer and System Sciences, 1–32 (to be published)
Santiago, R., Bedregal, B., Acióly, B.: Formal Aspects of Correctness and Optimality in Interval Computations. Formal Asp. of Comput. 18(2), 231–243 (2006)
Trillas, E., Valverde, L.: On Implication and Indistinguishability in the Setting of Fuzzy Logic. In: Kacprzyk, J., Yager, R. (eds.) Management Decision Support Systems using Fuzzy Sets and Possibility Theory, pp. 198–212. Verlag TUV Rheinland, Cologne (1985)
Yager, R.R.: On Some New Classes of Implication Operators and Their Role in Approximate Reasoning. Inf. Sci. 167(1-4), 193–216 (2004)
Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Reiser, R., Bedregal, B., Bustince, H., Fernandez, J. (2012). Generation of Interval-Valued Intuitionistic Fuzzy Implications from K-Operators, Fuzzy Implications and Fuzzy Coimplications. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances in Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31715-6_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-31715-6_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31714-9
Online ISBN: 978-3-642-31715-6
eBook Packages: Computer ScienceComputer Science (R0)