Nothing Special   »   [go: up one dir, main page]

Skip to main content

Implication Functions in Interval-Valued Fuzzy Set Theory

  • Chapter
Advances in Fuzzy Implication Functions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 300))

Abstract

Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia (deposed in Central Sci.-Technical Library of Bulg. Acad. of Sci., 1697/84) (1983) (in Bulgarian)

    Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Physica-Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  4. Atanassov, K.T.: Remarks on the conjunctions, disjunctions and implications of the intuitionistic fuzzy logic. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(1), 55–65 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Baczyński, M.: On a class of distributive fuzzy implications. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9, 229–238 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Baczyński, M.: On some properties of intuitionistic fuzzy implications. In: Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2003), Zittau, Germany, pp. 168–171 (2003)

    Google Scholar 

  7. Baczyński, M.: On the distributivity of implication operations over t-representable t-norms generated from strict t-norms in atanassov’s intuitionistic fuzzy sets theory. In: Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L. (eds.) Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), pp. 1612–1619 (2008)

    Google Scholar 

  8. Baczyński, M.: On the Distributivity of Implication Operations over t-Representable t-Norms Generated from Strict t-Norms in Interval-Valued Fuzzy Sets Theory. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 637–646. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Baczyński, M., Jayaram, B.: Fuzzy implications. STUDFUZZ, vol. 231. Springer, Berlin (2008)

    MATH  Google Scholar 

  10. Baczyński, M., Jayaram, B.: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Transactions of Fuzzy Systems 17, 590–603 (2009)

    Article  Google Scholar 

  11. Bedregal, B.R.C., Dimuro, G.P., Santiago, R.H.N., Reiser, R.H.S.: On interval fuzzy s-implications. Information Sciences 180, 1373–1389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bedregal, B.R.C., Takahashi, A.: The best interval representations of t-norms and automorphisms. Fuzzy Sets and Systems 157(24), 3220–3230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beliakov, G., Bustince, H., Goswami, D.P., Mukherjee, U.K., Pal, N.R.: On averaging operators for atanassov’s intuitionistic fuzzy sets. Information Sciences 181, 1116–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Binmore, K.G.: The foundations of analysis: A straightforward introduction. Book 2 Topological ideas. Cambridge University Press (1981)

    Google Scholar 

  15. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems 160(13), 1819–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Combs, W.E., Andrews, J.E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems 6, 1–11 (1998)

    Article  Google Scholar 

  17. Cornelis, C., Deschrijver, G., Kerre, E.E.: Implication in intuitionistic and interval-valued fuzzy set theory: construction, classification and application. International Journal of Approximate Reasoning 35(1), 55–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deschrijver, G.: Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory. Information Sciences (submitted)

    Google Scholar 

  19. Deschrijver, G.: A thorough study of the basic operators in intuitionistic fuzzy set theory. Ph. D. Thesis, Ghent University, Belgium (2004) (in Dutch)

    Google Scholar 

  20. Deschrijver, G.: Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory. Fuzzy Sets and Systems 160(21), 3080–3102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deschrijver, G., Cornelis, C.: Representability in interval-valued fuzzy set theory. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(3), 345–361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61 (2004)

    Article  MathSciNet  Google Scholar 

  23. Deschrijver, G., Kerre, E.E.: Classes of intuitionistic fuzzy t-norms satisfying the residuation principle. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(6), 691–709 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deschrijver, G., Kerre, E.E.: Uninorms in L *-fuzzy set theory. Fuzzy Sets and Systems 148(2), 243–262 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deschrijver, G., Kerre, E.E.: Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets and Systems 153(2), 229–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deschrijver, G., Kerre, E.E.: Smets-Magrez axioms for intuitionistic fuzzy R-implicators. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13(4), 453–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dilworth, R.P., Ward, M.: Residuated lattices. Transactions of the Americal Mathematical Society 45, 335–354 (1939)

    Article  MathSciNet  Google Scholar 

  29. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic Journal of the IGPL 16(2), 195–216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi? In: Proceedings of the 11th National Conference on Artificial Intelligence (AAAI 1994), Seattle, Washington, pp. 149–154 (1994)

    Google Scholar 

  31. Esteva, F., Garcia-Calvés, P., Godo, L.: Enriched interval bilattices and partial many-valued logics: an approach to deal with graded truth and imprecision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 2(1), 37–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gehrke, M., Walker, C.L., Walker, E.A.: Some comments on interval valued fuzzy sets. International Journal of Intelligent Systems 11(10), 751–759 (1996)

    Article  MATH  Google Scholar 

  34. Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21(1), 1–17 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Höhle, U.: Commutative, residuated l-monoids. In: Höhle, U., K.E.P. (eds.) Non-Classical Logics and Their Applications to Fuzzy Subsets: a Handbook of the Mathematical Foundations of Fuzzy Set Theory, pp. 53–106. Kluwer Academic Publishers (1995)

    Google Scholar 

  36. Jayaram, B., Rao, C.J.M.: On the distributivity of fuzzy implications over t- and s-norms. IEEE Transactions on Fuzzy Systems 12, 194–198 (2004)

    Article  Google Scholar 

  37. Liu, H.W., Wang, G.J.: A note on implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets and Systems 157, 3231–3236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mitchell, H.B.: An intuitionistic OWA operator. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12(6), 843–860 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Moore, R.E.: Methods and applications of interval analysis. Society for Industrial and Applied Mathematics, Philadelphia (1979)

    Book  MATH  Google Scholar 

  40. Pankowska, A., Wygralak, M.: General IF-sets with triangular norms and their applications to group decision making. Information Sciences 176(18), 2713–2754 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ruiz-Aguilera, D., Torrens, J.: Distributivity of strong implications over conjunctive and disjunctive uninorms. Kybernetica 42, 319–336 (2005)

    MathSciNet  Google Scholar 

  42. Ruiz-Aguilera, D., Torrens, J.: Distributivity of residual implications over conjunctive and disjunctive uninorms. Fuzzy Sets and Systems 158, 23–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sambuc, R.: Fonctions Φ-floues. Application à l’aide au diagnostic en pathologie thyroidienne. Ph.D. thesis, Université de Marseille, France (1975)

    Google Scholar 

  44. Santiago, R., Bedregal, B., Acióly, B.: Formal aspects of correctness and optimality of interval computations. Formal Aspects Comput. 18, 231–243 (2006)

    Article  MATH  Google Scholar 

  45. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Trillas, E., Alsina, C.: On the law [p ∧ q → r] = [(p → r) ∨ (q → r)] in fuzzy logic. IEEE Transactions on Fuzzy Systems 10, 84–88 (2002)

    Article  Google Scholar 

  47. Van Gasse, B.: Interval-valued algebras and fuzzy logics. Ph. D. Thesis, Ghent University, Belgium (2010)

    Google Scholar 

  48. Van Gasse, B., Cornelis, C., Deschrijver, G.: Interval-Valued Algebras and Fuzzy Logics. In: Cornelis, C., Deschrijver, G., Nachtegael, M., Schockaert, S., Shi, Y. (eds.) 35 Years of Fuzzy Set Theory. STUDFUZZ, vol. 261, pp. 57–82. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  49. Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.E.: A characterization of interval-valued residuated lattices. International Journal of Approximate Reasoning 49(2), 478–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.E.: Triangle algebras: a formal logic approach to interval-valued residuated lattices. Fuzzy Sets and Systems 159(9), 1042–1060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Van Gasse, B., Cornelis, C., Deschrijver, G., Kerre, E.E.: The pseudo-linear semantics of interval-valued fuzzy logics. Information Sciences 179(6), 717–728 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Van Gasse, B., Deschrijver, G., Cornelis, C., Kerre, E.E.: The standard completeness of interval-valued monoidal t-norm based logic. Information Sciences 189, 63–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vlachos, I.K., Sergiadis, G.D.: Subsethood, entropy, and cardinality for interval-valued fuzzy sets–an algebraic derivation. Fuzzy Sets and Systems 158(12), 1384–1396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wei, G.: Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Applied Soft Computing 10, 423–431 (2010)

    Article  Google Scholar 

  55. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 15, 1179–1187 (2007)

    Article  Google Scholar 

  56. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning–I. Information Sciences 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zalta, E.N.: Basic concepts in modal logic (1995), http://mally.stanford.edu/notes.pdf

  60. Zeng, W., Li, H.: Relationship between similarity measure and entropy of interval-valued fuzzy sets. Fuzzy Sets and Systems 157(11), 1477–1484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glad Deschrijver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deschrijver, G. (2013). Implication Functions in Interval-Valued Fuzzy Set Theory. In: Baczyński, M., Beliakov, G., Bustince Sola, H., Pradera, A. (eds) Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35677-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35677-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35676-6

  • Online ISBN: 978-3-642-35677-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics