Nothing Special   »   [go: up one dir, main page]

Skip to main content

Handling Multi-optimization with Gender-Hierarchy Based Particle Swarm Optimizer

  • Conference paper
Advances in Swarm Intelligence (ICSI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7331))

Included in the following conference series:

  • 3222 Accesses

Abstract

In this study, we present a novel particle swarm optimizer, called Gender-Hierarchy Based Particle Swarm Optimizer (GH-PSO), to handle multi-objective optimization problems. By employing the concepts of gender and hierarchy to particles, both the exploration ability and the exploitation skill are extended. In order to maintain an uniform distribution of non-dominated solutions, a novel proposal, called Rectilinear Distance based Selection and Replacement (RDSR), is also proposed. The proposed algorithm is validated by using several benchmark functions and metrics. The results show that the proposed algorithm outperforms over MOPSO, NSGA-II and PAES-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moore, J., Chapman, R., Dozier, G.: Multiobjective Particle Swarm Optimization. In: ACM-SE 38: Proceedings of the 38th Annual on Southeast Regional Conference, pp. 56–57 (2000)

    Google Scholar 

  2. Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling Multiple Objectives With Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)

    Article  Google Scholar 

  3. Moore, J., Chapman, R.: Application of Particle Swarm to Multiobjective Optimization. Dept. of Computer Science Software Engineering, Auburn University (1999)

    Google Scholar 

  4. Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization. Engineering Optimization 34(2), 141–153 (2002)

    Article  Google Scholar 

  5. Hu, X., Eberhart, R.: Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1677–1681 (2002)

    Google Scholar 

  6. Li, X.: A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 603–607 (2002)

    Google Scholar 

  8. Gao, J., Li, H., Hu, L.: Gender-Hierarchy Particle Swarm Optimizer Based on Punishment. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 94–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Ph.D. thesis, Vanderbilt University, Nashville, Tennessee (1984)

    Google Scholar 

  10. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Knowles, J.D., Corne, D.W.: Approximating the Non-dominated Front using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, W., Zhang, W., Jiang, Y., Li, H. (2012). Handling Multi-optimization with Gender-Hierarchy Based Particle Swarm Optimizer. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30976-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30975-5

  • Online ISBN: 978-3-642-30976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics