Abstract
The paper presents a novel particle swarm optimizer (PSO), called gender-hierarchy particle swarm optimizer based on punishment (GH-PSO). In the proposed algorithm, the social part and recognition part of PSO both are modified in order to accelerate the convergence and improve the accuracy of the optimal solution. Especially, a novel recognition approach, called general recognition, is presented to furthermore improve the performance of PSO. Experimental results show that the proposed algorithm shows better behaviors as compared to the standard PSO, tribes-based PSO and GH-PSO with tribes.
The research is funded by National Natural Science Foundation of China (10926198).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: A new optimizer using particle swarm theory. In: Proc. 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Shi, Y.H., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proc. 1999 Congress on Evolutionary Computation, pp. 1945–1950. IEEE Press, Piscataway (1999)
Clerc, M., Kennedy, J.: The particle swarmexplosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)
Chen, K., Li, T.H., Cao, T.C.: Tribe-PSO: A novel global optimization algorithm and its application in molecular docking. Chemometrics Intell. Lab. Syst. 82, 248–259 (2006)
Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intelligence 3, 1935–3820 (2009)
Shi, Y.H., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc.1998 IEEE International Conference on Computational Intelligence, Anchorage, Alaska, pp. 69–73. IEEE Press, Los Alamitos (1998)
Trelea, I.C.: The particle swarm optimization algrorithm:convergence analysis and parameter selection. Inform. Proc. Lett. 85, 317–325 (2003)
Fan, H.Y.: A modification to particle swarm optimization algorithm. Eng. Comput. 19, 970–989 (2002)
Schutte, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. Struct. Multidis. Optim. 25, 261–269 (2003)
Braendler, D., Hendtlass, T.: Improving particle swarm optimization using the collective movement of the swarm. IEEE Trans. Evol. Comput. (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, J., Li, H., Hu, L. (2010). Gender-Hierarchy Particle Swarm Optimizer Based on Punishment. In: Tan, Y., Shi, Y., Tan, K.C. (eds) Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science, vol 6145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13495-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-13495-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13494-4
Online ISBN: 978-3-642-13495-1
eBook Packages: Computer ScienceComputer Science (R0)