Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8064))

Included in the following conference series:

Abstract

As part of the Robobee project, we have modified a coaxial helicopter to operate using a discrete time map-based neuronal network for the control of heading, altitude, yaw, and odometry. Two concepts are presented: 1. A model for the integration of sensory data into the neural network. 2. A function for transferring the instantaneous spike frequency of motor neurons to a pulse width modulated signal required to drive motors and other types of actuators. The helicopter is provided with a flight vector and distance to emulate the information conveyed by the honeybee’s waggle dance. This platform allows for the testing of proposed networks for adaptive navigation in an effort to simulate honeybee foraging on a flying robot.

Supported by NSF ITR Expeditions Grant 0925751.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ayers, J., Rulkov, N., Knudsen, D., Kim, Y.-B., Volkovskii, A., Selverston, A.: Controlling Underwater Robots with Electronic Nervous Systems. Appied Bionics and Biomimetics 7, 57–67 (2010)

    Article  Google Scholar 

  2. Ayers, J., Blustein, D., Westphal, A.: A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 1–12. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Ayers, J., Witting, J.: Biomimetic Approaches to the Control of Underwater Walking Machines. Phil. Trans. R. Soc. Lond. A 365, 273–295 (2007)

    Article  Google Scholar 

  4. Baader, A., Schfer, M.: The perception of the visual flow field by flying locusts: A behavioural and neuronal analysis. J. Exp. Biol. 165, 137–160 (1992)

    Google Scholar 

  5. Blustein, D., Rosenthal, N., Ayers, J.: Designing and implementing nervous system simulations on LEGO robots. J of Visualized Experiments (in press, 2013)

    Google Scholar 

  6. Blustein, D., Westphal, A., Ayers, J.: Optical flow mediates biomimetic odometry on an autonomous helicopter (in preparation, 2013)

    Google Scholar 

  7. Boles, L.C., Lohmann, K.J.: True navigation and magnetic maps in spiny lobsters. Nature 421(6918), 60–63 (2003)

    Article  Google Scholar 

  8. Chahl, J., Rosser, K., Mizutani, A.: Bioinspired optical sensors for unmanned aerial systems. In: Proceedings of SPIE: Bioinspiration, Biomimetics, and Bioreplication, vol. 7975, pp. 0301–0311 (2011)

    Google Scholar 

  9. Conroy, J., Gremillion, G., Ranganathan, B., Humbert, J.S.: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Auton. Robot. 27(3), 189–198 (2009)

    Article  Google Scholar 

  10. Dantu, K., Kate, B., Waterman, J., Bailis, P., Welsh, M.: Programming micro-aerial vehicle swarms with karma. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM (2011)

    Google Scholar 

  11. Dickinson, M.H., Tu, M.S.: The function of dipteran flight muscle. Comparative Biochemistry and Physiology Part A: Physiology 116(3), 223–238 (1997)

    Article  Google Scholar 

  12. Duhamel, P.-E.J., Perez-Arancibia, N.O., Barrows, G.L., Wood, R.J.: Biologically Inspired Optical-Flow Sensing for Altitude Control of Flapping-Wing Microrobots. IEEE/ASME Trans Mechatron 18(2), 556–568 (2013)

    Article  Google Scholar 

  13. Dyer, F.C.: The biology of the dance language. Annual Review of Entomology 47(1), 917–949 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dyer, F.C., Dickinson, J.A.: Sun-compass learning in insects: Representation in a simple mind. Current Directions in Psychological Science 5(3), 67–72 (1996)

    Article  Google Scholar 

  15. Finio, B.M., Wood, R.J.: Open-loop roll, pitch and yaw torques for a robotic bee. In: IEEE/RSJ International Conf. on Intelligent Robots and Systems, IROS (2012)

    Google Scholar 

  16. Fraser, P.J.: Statocysts in Crabs: Short-Term Control of Locomotion and Long-Term Monitoring of Hydrostatic Pressure. Biol. Bull. 200(2), 155–159 (2001)

    Article  Google Scholar 

  17. Ibbotson, M.: Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera. J. Comp. Physiol. A: Neuroethology, Sensory, Neural, and Behavioral Physiology 168(1), 91–102 (1991)

    Article  Google Scholar 

  18. Joesch, M., Weber, F., Eichner, H., Borst, A.: Functional Specialization of Parallel Motion Detection Circuits in the Fly. J.Neuroscience 33(3), 902–905 (2013)

    Article  Google Scholar 

  19. Kate, B., Waterman, J., Dantu, K., Welsh, M.: Simbeeotic: A simulator and testbed for micro-aerial vehicle swarm experiments. In: Proceedings of the 11th International Conference on Information Processing in Sensor Networks. ACM (2012)

    Google Scholar 

  20. Kennedy, D., Davis, W.J.: Organization of Invertebrate Motor Systems. Handbook of Physiology. The organization of invertebrate motor systems. In: Geiger, S.R., Kandel, E.R., Brookhart, J.M., Mountcastle, V.B. (eds.) Handbook of Physiology, sec. I, vol. I, part 2., pp. 1023–1087. Amer. Physiol. Soc, Bethesda (1977)

    Google Scholar 

  21. Kiehn, O.: Development and functional organization of spinal locomotor circuits. Current Opinion in Neurobiology 21(1), 100–109 (2011)

    Article  Google Scholar 

  22. Lobo, J., Ferreira, J.F., Dias, J.: Bioinspired visuo-vestibular artificial perception system for independent motion segmentation. In: Second International Cognitive Vision Workshop, ECCV 9th European Conference on Computer Vision, Graz, Austria (2006)

    Google Scholar 

  23. Lu, J., Yang, J., Kim, Y.B., Ayers, J.: Low Power, High PVT Variation Tolerant Central Pattern Generator Design for a Bio-hybrid Micro Robot. In: IEEE International Midwest Symposium on Circuits and Systems, vol. 55, pp. 782–785 (2012)

    Google Scholar 

  24. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled Flight of a Biologically Inspired. Insect-Scale Robot. Science 340(6132), 603–607 (2013)

    Google Scholar 

  25. Paulk, A., Millard, S.S., van Swinderen, B.: Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annual Review of Entomology 58, 313–332 (2013)

    Article  Google Scholar 

  26. Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Annu.Rev.Neurosci. 16, 265–297 (1993)

    Article  Google Scholar 

  27. Peirce, J.: PsychoPy - Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007)

    Article  Google Scholar 

  28. Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.): Living Machines 2012. LNCS, vol. 7375. Springer, Heidelberg (2012)

    Google Scholar 

  29. Rabinovich, M.I., Selverston, A., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006)

    Article  Google Scholar 

  30. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys.Rev. E 65, 041922 (2002)

    Article  MathSciNet  Google Scholar 

  31. Rutkowski, A.J., Miller, M.M., Quinn, R.D., Willis, M.A.: Egomotion estimation with optic flow and air velocity sensors. Biol. Cybern. 104(6), 351–367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sarpeshkar, R.: Analog versus digital: extrapolating from electronics to neurobiology. Neural Computation 10(7), 1601–1638 (1998)

    Article  Google Scholar 

  33. Srinivasan, M.V.: Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology 55, 267–284 (2010)

    Article  Google Scholar 

  34. Srinivasan, M.V.: Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Reviews 91(2), 413–460 (2011)

    Article  Google Scholar 

  35. Srinivasan, M.V.: Visual control of navigation in insects and its relevance for robotics. Current Opinion in Neurobiology 21(4), 535–543 (2011)

    Article  Google Scholar 

  36. Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996)

    Google Scholar 

  37. Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.: Neurons, Networks and Motor Behavior. MIT Press, Cambridge (1997)

    Google Scholar 

  38. Teoh, Z.E., Fuller, S.B., Chirarattananon, P.: A hovering flapping-wing microrobot with altitude control and passive upright stability. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3209–3216 (2012)

    Google Scholar 

  39. Webb, B.: Can robots make good models of biological behaviour? Behav. Brain Sci. 24(6), 1033–1050 (2001)

    Google Scholar 

  40. Webb, B.: Robots in invertebrate neuroscience. Nature 417(6886), 359–363 (2002)

    Article  Google Scholar 

  41. Webb, B., Reeve, R.: Reafferent or redundant: integration of phonotaxis and optomotor behavior in crickets and robots. Adaptive Behavior 11(3), 137–158 (2003)

    Article  Google Scholar 

  42. Westphal, A., Ayers, J.: A neuronal compass for autonomous biomimetic robots (in preparation, 2013)

    Google Scholar 

  43. Westphal, A., Rulkov, N., Ayers, J., Brady, D., Hunt, M.: Controlling a lamprey-based robot with an electronic nervous system. Smart Struct. Sys. 8(1), 37–54 (2011)

    Google Scholar 

  44. Wiersma, C.A., Yamaguchi, T.: Integration of visual stimuli by the crayfish central nervous system. J. Exp. Biol. 47(3), 409–431 (1967)

    Google Scholar 

  45. Wood, R.J., Avadhanula, S., Steltz, E., Seeman, M., Entwistle, J., Bachrach, A., Barrows, G., Sanders, S.: An autonomous palm-sized gliding micro air vehicle. IEEE Robotics and Automation Magazine 14(2), 82–91 (2007)

    Article  Google Scholar 

  46. Yorozu, S., Wong, A., Fischer, B., Dankert, H., Kernan, M., Kamikouchi, A., Ito, K., Anderson, D.: Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458, 201–205 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Westphal, A., Blustein, D., Ayers, J. (2013). A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science(), vol 8064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39802-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39802-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39801-8

  • Online ISBN: 978-3-642-39802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics