Abstract
Insects are capable of robust visual navigation in complex environments using efficient information extraction and processing approaches. This paper presents an implementation of insect inspired visual navigation that uses spatial decompositions of the instantaneous optic flow to extract local proximity information. The approach is demonstrated in a corridor environment on an autonomous quadrotor micro-air-vehicle (MAV) where all the sensing and processing, including altitude, attitude, and outer loop control is performed on-board. The resulting methodology has the advantages of computation speed and simplicity, hence are consistent with the stringent size, weight, and power requirements of MAVs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amidi, O., Mesaki, Y., & Kanade, T. (1999). A visual odometer for autonomous helicopter flight. Robotics & Autonomous Systems, 28, 185.
Argyros, A., Tsakiris, D., & Groyer, C. (2004). Biomimetic centering behavior for mobile robots with panoramic sensors. IEEE Robotics and Automation Magazine, 21–30.
Barrows, G., Chahl, J., & Srinivasan, M. (2003). Biologically inspired visual sensing and flight control. The Aeronautical Journal, 107, 159–168.
Borst, A., & Haag, J. (2002). Neural networks in the cockpit of the fly. Journal of Comparative Physiology A, 188, 419–437.
Braybrook, R. (2008). Air ops. Armada International.
Collogan, D. (2006). UAVs on the horizon. Business & Commercial Aviation.
Conroy, J., & Pines, D. (2007). System identification of a miniature electric helicopter using mems inertial, optic flow, and sonar sensing. In Proceedings of the American Helicopter Society, Virginia Beach, VA.
Coombs, D., Herman, M., Hong, T., & Nashman, M. (1998). Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Transactions on Robotics and Automation, 14, 49–59.
Egelhaaf, M., Kern, R., Krapp, H., Kretzberg, J., Kurtz, R., & Warzecha, A. (2002). Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences, 25, 96–102.
Evers, J. (2007). Biological inspiration for agile autonomous air vehicles. In Platform innovations and system integration for unmanned air, land, and sea vehicles, Neuilly-sur-Seine, France.
Franz, M., & Mallot, H. (2000). Biomimetic robot navigation. Robotics and Autonomous Systems, 30, 133–153.
Frye, M., & Dickinson, M. (2001). Fly flight: A model for the neural control of complex behavior. Neuron, 32, 385–388.
Garcia-Pardo, P. J., Sukhatme, G. S., & Montgomery, J. F. (2002). Towards vision-based safe landing for an autonomous helicopter. Robotics and Autonomous Systems, 38(1), 19–29.
Garratt, M., & Chahl, J. (2003). Visual control of an autonomous helicopter. In Proceedings of the 41st aerospace sciences meeting and exhibit, Reno, Nevada.
Green, W.E., Oh, P. Y., & Barrows, G. (2004). Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In Proceedings of the IEEE international conference on robotics and automation, New Orleans, LA.
Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., & Beard, R. (2006). Maximizing miniature aerial vehicles: Obstacle and terrain avoidance for mavs. IEEE Robotics and Automation Magazine, 34–42 (September).
Gurfil, P., & Rotstein, H. (2001). Partial aircraft state estimation from visual motion using the subspace constraints approach. Journal of Guidance, Control, and Dynamics, 24, 1016–1028.
Harrison, R. (2005). A biologically inspired analog ic for visual collision detection. IEEE Transactions on Circuits and Systems, 52(11), 2308–2318.
Herisse, B., Russotto, F. X., Hamel, T., & Mahony, R. (2008). Hovering flight and vertical landing control of a vtol unmanned aerial vehicle using optical flow. In IEEE/RSJ international conference on intelligent robots and systems, Acropolis Convention Center, Nice, France (pp. 1404–1409).
Hrabar, S., & Sukhatme, G. S. (2003). Omnidirectional vision for an autonomous helicopter. In IEEE international conference on robotics and automation (pp. 558–563).
Hrabar, S., & Sukhatme, G. S. (2004). A comparison of two camera configurations for optic-flow based navigation of a uav through urban canyons. In EEE/RSJ international conference on intelligent robots and systems (pp. 2673–2680).
Humbert, J. S., & Hyslop, A. H. (2009). Bio-inspired visuomotor convergence. IEEE Transactions on Robotics (in press).
Humbert, J. S., Murray, R. M., & Dickinson, M. H. (2005a). A control-oriented analysis of bio-inspired visuomotor convergence. In Proceedings of the 44th IEEE conference on decision and control, Seville, Spain.
Humbert, J. S., Murray, R. M., & Dickinson, M. H. (2005b). Sensorimotor convergence in visual navigation and flight control systems. In Proceedings of the 16th IFAC world congress, Praha, Czech Republic.
Humbert, J. S., Hyslop, A. M., & Chinn, M. W. (2007). Experimental validation of wide-field integration methods for autonomous navigation. In Proceedings of the IEEE conference on intelligent robots and systems (IROS), San Diego, CA.
Hyslop, A., & Humbert, J. S. (2009). Autonomous navigation in 3-d urban environments using wide-field integration of optic flow. AIAA Journal of Guidance, Control, and Dynamics (submitted).
Kearney, J.K., Thompson, W.B., & Boley, D.L. (1987). Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2), 229–244.
Kendoula, F., Fantoni, I., & Nonamib, K. (2009). Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Robotics and Autonomous Systems, 57(6–7), 591–602.
Krapp, H., Hengstenberg, B., & Hengstenberg, R. (1998). Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology, 79, 1902–1917.
Li, J., & Chellappa, R. (2005). A factorization method for structure from planar motion. In Motion and video computing, 2005. WACV/MOTIONS ’05 Volume 2. IEEE workshop on (pp. 154–159).
Mulrine, A. (2008). Drones fill the troops gap in Afghanistan (U.S. News & World Report).
Muratet, L., Doncieux, S., Briere, Y., & Meyer, J. (2005). A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and Autonomous Systems, 50(4), 195–209.
Netter, T., & Franceschini, N. (2002). A robotic aircraft that follows terrain using a neuromorphic eye. In Proceedings of the IEEE/RSJ IROS conference on robots and systems, Lausanne, Switzerland.
Santos-Victor, J., & Sandini, G. (1997). Embedded visual behaviors for navigation. Robotics and Autonomous Systems, 19, 299–313.
Santos-Victor, J., Sandini, G., Curroto, F., & Garibaldi, S. (1995). Divergent stereo in autonomous navigation—from bees to robots. International Journal of Computer Vision, 14, 159–177.
Serres, J., Dray, D., Ruffier, F., & Franceschini, N. (2008). A vision-based autopilot for a miniature air vehicle: Joint speed control and lateral obstacle avoidance. Autonomous Robots, 25, 103–122.
Serres, J., Ruffier, F., & Franceschini, N. (2005). Two optic flow regulators for speed control and obstacle avoidance. In Proceedings of the IEEE international conference on medical robotics and biomechatronics, Pisa, Italy.
Srinivasan, M., Chahl, J., Weber, K., Nagle, S. V. M., & Zhang, S. (1999). Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26, 203–216.
Srinivasan, M., & Zhang, S. (2004). Visual motor computations in insects. Annual Review if Neuroscience, 27, 679–696.
Stevens, B., & Lewis, F. (2003). Aircraft control and simulation. Hoboken: Wiley.
Tammero, L. F., & Dickinson, M. H. (2002). The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 205, 327–343.
Weber, K., Venkatesh, S., & Srinivasan, M. (1999). Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26, 203–216.
Zhu, W.-H., & Lamarche, T. (2007). Velocity estimation by using position and acceleration sensors. IEEE Transactions on Industrial Electronics, 54, 2706–2715.
Zufferey, J. C., & Floreano, D. (2006). Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Transactions on Robotics, 22, 137–146.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found at http://dx.doi.org/10.1007/s10514-009-9154-7
Rights and permissions
About this article
Cite this article
Conroy, J., Gremillion, G., Ranganathan, B. et al. Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Auton Robot 27, 189–198 (2009). https://doi.org/10.1007/s10514-009-9140-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-009-9140-0