Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparison of Explicit and Implicit Graph Embedding Methods for Pattern Recognition

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2013)

Abstract

In recent years graph embedding has emerged as a promising solution for enabling the expressive, convenient, powerful but computational expensive graph based representations to benefit from mature, less expensive and efficient state of the art machine learning models of statistical pattern recognition. In this paper we present a comparison of two implicit and three explicit state of the art graph embedding methodologies. Our preliminary experimentation on different chemoinformatics datasets illustrates that the two implicit and three explicit graph embedding approaches obtain competitive performance for the problem of graph classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brun, L., Conte, D., Foggia, P., Vento, M.: A graph-kernel method for re-identification. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011, Part I. LNCS, vol. 6753, pp. 173–182. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recognition 44(5), 1057–1067 (2011)

    Article  MATH  Google Scholar 

  3. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society (February 1997)

    Google Scholar 

  4. Gaüzère, B., Brun, L., Villemin, D.: Graph kernels based on relevant patterns and cycle information for chemoinformatics. In: Proceedings of ICPR 2012. IAPR, pp. 1775–1778. IEEE (November 2012)

    Google Scholar 

  5. Gaüzére, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics. Pattern Recognition Letters 33(15), 2038–2047 (2012)

    Article  Google Scholar 

  6. Gaüzère, B., Hasegawa, M., Brun, L., Tabbone, S.: Implicit and explicit graph embedding: Comparison of both approaches on chemoinformatics applications. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 510–518. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node attribute statistics. Pattern Recognition 45(9), 3072–3083 (2012)

    Article  Google Scholar 

  8. Gibert, J., Valveny, E., Bunke, H., Fornés, A.: On the correlation of graph edit distance and l 1 distance in the attribute statistics embedding space. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 135–143. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. In: Proceedings of the IEEE (1992)

    Google Scholar 

  10. Jouili, S., Tabbone, S.: Graph embedding using constant shift embedding. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 83–92. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Luqman, M.M., Ramel, J.Y., Lladós, J.: Improving Fuzzy Multilevel Graph Embedding through Feature Selection Technique. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR & SPR 2012. LNCS, vol. 7626, pp. 243–253. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recognition 46(2), 551–565 (2013)

    Article  MATH  Google Scholar 

  13. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific Publishing Co., Inc., River Edge (2007)

    MATH  Google Scholar 

  14. Riesen, K., Bunke, H.: Iam graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Computing 27(7), 950–959 (2009)

    Article  Google Scholar 

  16. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. IJPRAI 23(6), 1053–1081 (2009)

    Google Scholar 

  17. Sidere, N., Héroux, P., Ramel, J.Y.: Vector representation of graphs: Application to the classification of symbols and letters. In: ICDAR, pp. 681–685. IEEE Computer Society (2009)

    Google Scholar 

  18. Smola, A.J., Kondor, R.I.: Kernels and regularization on graphs. In: XV Annual Conference on Learning Theory, pp. 144–158 (2003)

    Google Scholar 

  19. Steinke, F., Schlkopf, B.: Kernels, regularization and differential equations. Pattern Recognition 41(11), 3271–3286 (2008)

    Article  MATH  Google Scholar 

  20. Toivonen, H., Srinivasan, A., King, R., Kramer, S., Helma, C.: Statistical evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10), 1183–1193 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conte, D. et al. (2013). A Comparison of Explicit and Implicit Graph Embedding Methods for Pattern Recognition. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics