Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sparsity Sharing Embedding for Face Verification

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

  • 3949 Accesses

Abstract

Face verification in an uncontrolled environment is a challenging task due to the possibility of large variations in pose, illumination, expression, occlusion, age, scale, and misalignment. To account for these intra-personal settings, this paper proposes a sparsity sharing embedding (SSE) method for face verification that takes into account a pair of input faces under different settings. The proposed SSE method measures the distance between two input faces \({\mathbf x}_A\) and \({\mathbf x}_B\) under intra-personal settings s A and s B in two steps: 1) in the association step, \({\mathbf x}_A\) and \({\mathbf x}_B\) is represented in terms of a reconstructive weight vector and identity under settings s A and s B , respectively, from the generic identity dataset; 2) in the prediction step, the associated faces are replaced by embedding vectors that conserve their identity but are embedded to preserve the inter-personal structures of the intra-personal settings. Experiments on a MultiPIE dataset show that the SSE method performs better than the AP model in terms of the verification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1063–1074 (2003)

    Article  Google Scholar 

  2. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  3. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2, 27 (2011)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  5. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? metric learning approaches for face identification. In: International Conference on Computer Vision (2009)

    Google Scholar 

  6. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: International Conference on Computer Vision (2005)

    Google Scholar 

  7. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 328–340 (2005)

    Article  Google Scholar 

  8. Kumar, N., Berg, A., Belhumeur, P., Nayar, S.: Attribute and simile classifiers for face verification. In: International Conference on Computer Vision (2009)

    Google Scholar 

  9. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  10. Nguyen, H.V., Bai, L.: Cosine Similarity Metric Learning for Face Verification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 709–720. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Niyogi, X.: Locality preserving projections. In: Advances in Neural Information Processing System (2004)

    Google Scholar 

  12. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  13. Qiao, L., Chen, S., Tan, X.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43, 331–341 (2010)

    Article  MATH  Google Scholar 

  14. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  15. Schroff, F., Treibitz, T., Kriegman, D., Belongie, S.: Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In: International Conference on Computer Vision (2011)

    Google Scholar 

  16. Su, Y., Shan, S., Chen, X., Gao, W.: Adaptive generic learning for face recognition from a single sample per person. In: Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  17. Tang, X., Wang, X.: Face sketch recognition. IEEE Transactions on Circuits and Systems for Video Technology 14, 50–57 (2004)

    Article  MathSciNet  Google Scholar 

  18. Wolf, L., Hassner, T., Taigman, Y.: Similarity Scores Based on Background Samples. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 88–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 210–227 (2009)

    Article  Google Scholar 

  20. Yin, Q., Tang, X., Sun, J.: An associate-predict model for face recognition. In: Computer Vision and Pattern Recognition (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, D., Park, H., Chung, J., Song, Y., Yoo, C.D. (2013). Sparsity Sharing Embedding for Face Verification. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics