Abstract
One important type of biometric authentication is face recognition , a research area of high popularity with a wide spectrum of approaches that have been proposed in the last few decades. The majority of existing approaches are conceived for or evaluated on constrained still images. However, more recently research interests have shifted toward unconstrained “in-the-wild ” still images and videos. To some extent, current state-of-the-art systems are able to cope with variability due to pose, illumination, expression, and size, which represent the challenges in unconstrained face recognition. To date, only few attempts have addressed the problem of face recognition in mobile environment , where high degradation is present during both data acquisition and transmission. This book chapter deals with face recognition in mobile and other challenging environments, where both still images and video sequences are examined. We provide an experimental study of one commercial off-the-shelf (COTS) and four recent open-source face recognition algorithms , including color-based linear discriminant analysis (LDA) , local Gabor binary pattern histogram sequences (LGBPHSs) , Gabor grid graphs , and intersession variability (ISV) modeling . Experiments are performed on several freely available challenging still image and video face databases, including one mobile database, always following the evaluation protocols that are attached to the databases. Finally, we supply an easily extensible open-source toolbox to rerun all the experiments, which includes the modeling techniques, the evaluation protocols, and the metrics used in the experiments and provides a detailed description on how to regenerate the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
For example, the results on LFW [16] are published under: http://vis-www.cs.umass.edu/lfw/results.html.
- 7.
One example for reproducible research based on the FaceRecLib can be found under: http://pypi.python.org/pypi/xfacereclib.paper.BeFIT2012.
- 8.
- 9.
To avoid misunderstandings, we do not use the name CohortLDA as in [22], but we stick to the old name of the algorithm (LDA-IR).
- 10.
The COTS vendor requested to stay anonymous.
- 11.
- 12.
The website http://www2.ece.ohio-state.edu/˜aleix/ARdatabase.html re-ports more than 4000 images, but we could not reach the controller of the database to clarify the difference.
- 13.
- 14.
To be comparable to the occlusion and both protocols, the same training set, i.e., including occluded faces, was also used in the illumination protocol.
- 15.
We just use the pickle module of Python to store the LDA-IR data. Table 11.2(b) shows the resulting file size on disk.
- 16.
References
Kanade, T.: Picture Processing System by Computer Complex and Recognition of Human Faces. PhD thesis, Kyoto University, Japan (1973)
Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)
Rowley, H.A., Baluja, S., Kanade, T.: Rotation invariant neural network-based face detection. In: CVPR, pp. 38–44, Springer (1998)
Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vision 57(2), 137–154 (2002)
Heusch, G., Rodriguez, Y., Marcel, S.: Local binary patterns as an image preprocessing for face authentication. In: FG, pp. 9–14. IEEE Computer Society (2006)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. Trans. Image Process. 19(6), 1635–1650 (2010)
Sanderson, C., Paliwal, K.K.: Fast features for face authentication under illumination direction changes. Pattern Recogn. Lett. 24(14), 2409–2419 (2003)
Günther, M., Haufe, D., Würtz, R.P.: Face recognition with disparity corrected Gabor phase differences. In ICANN, volume 7552 of LNCS, pp. 411–418. Springer, Berlin (2012)
Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. Trans. Image Process. 16(1), 57–68 (2007)
Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D.L., Weng, J.: Discriminant analysis of principal components for face recognition. In: Face Recognition: From Theory to Applications, pp. 73–85. Springer, Berlin (1998)
Gao, W., Cao, B., Shan, S., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. In: Technical report, Joint Research & Development Laboratory for Face Recognition, Chinese Academy of Sciences (2004)
Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: ICCV, vol. 1, pp. 786–791. IEEE Computer Society (2005)
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Cross-pollination of normalization techniques from speaker to face authentication using Gaussian mixture models. Trans. Inf. Forensics Secur. 7(2), 553–562 (2012)
El Shafey, L., McCool, C., Wallace, R., Marcel, S.: A scalable formulation of probabilistic linear discriminant analysis: Applied to face recognition. Trans. Pattern Anal. Mach. Intell. 35(7), 1788–1794 (2013)
McCool, C. et al.: Bi-modal person recognition on a mobile phone: using mobile phone data. In: ICME Workshop on Hot Topics in Mobile Multimedia, pp. 635–640. IEEE Computer Society (2012)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.G.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Technical report, University of Massachusetts, Amherst (2007)
Wolf, L., Hassner, T., Maoz. I.: Face recognition in unconstrained videos with matched background similarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011
Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)
Martínez, A.M., Benavente, R.: The AR face database. In: Technical Report 24, Computer Vision Center (1998)
Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: Bob: a free signal processing and machine learning toolbox for researchers. In: ACM-MM, pp. 1449–1452. ACM press (2012)
Phillips, P.J., Beveridge, J.R., Draper, B.A., Givens, G., O’Toole, A.J., Bolme, D.S., Dunlop, J., Lui, Y.M., Sahibzada, H., Weimer, S.: An introduction to the good, the bad, and the ugly face recognition challenge problem. In: FG, pp. 346–353. IEEE Computer Society (2011)
Lui, Y.M., Bolme, D.S., Phillips, P.J., Beveridge, J.R., Draper, B.A.: Preliminary studies on the good, the bad, and the ugly face recognition challenge problem. In: CVPR Workshops, pp. 9–16. IEEE Computer Society (2012)
Günther, M., Wallace, R., Marcel, S.: An open source framework for standardized comparisons of face recognition algorithms. In: ECCV. Workshops and Demonstrations, volume 7585 of LNCS, pp. 547–556. Springer, Berlin (2012)
Tan, X., Chen, S., Zhou, Z.-H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recogn. 39, 1725–1745 (2006)
Serrano, Á, Martín de Diego, I., Conde, C., Cabello, E.: Recent advances in face biometrics with Gabor wavelets: a review. Pattern Recogn. Lett. 31(5), 372–381 (2010)
Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. Syst. Man Cybern. Part C: Appl. Rev. 41(6), 765–781 (2011)
Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5(2), 41–68 (2009)
Shen, L., Bai, L.: A review on Gabor wavelets for face recognition. Pattern Anal. Appl. 9(2), 273–292 (2006)
Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research in signal processing—what, why, and how. IEEE Signal Process. Mag. 26(3), 37–47 (2009)
Vandewalle, P.: Code sharing is associated with research impact in image processing. Comput. Sci. Eng. 14(4), 42–47 (2012)
Ko, K.: User’s guide to NIST biometric image software (NBIS). In: Technical report, NIST Interagency/Internal Report (NISTIR)—7392 (2007)
Klontz, J.C., Klare, B.F., Klum, S., Jain, A.K., Burge, M.J.: Open source biometric recognition. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013)
Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: the extended M2VTS database. In: AVBPA, pp. 72–77. LNCS (1999)
Martin, A., Przybocki, M., Campbell, J.P.: The NIST Speaker Recognition Evaluation Program, chapter 8. Springer, Berlin (2005)
Günther, M. et al.: The 2013 face recognition evaluation in mobile environment. In: The 6th IAPR International Conference on Biometrics (2013)
Khoury, E. et al.: The 2013 speaker recognition evaluation in mobile environment. In: The 6th IAPR International Conference on Biometrics (2013)
Bansé, A.D., Doddington, G.R., Garcia-Romero, D., Godfrey, J.J., Greenberg, C.S., McCree, A.F.M., Przybocki, M., Reynolds, D.A.: Summary and initial results of the 2013–2014 speaker recognition i-vector machine learning challenge. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)
O’Toole, A.J., Phillips, P.J., Jiang, F., Ayyad, J., Penard, N., Abdi, H.: Face recognition algorithms surpass humans matching faces over changes in illumination. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1642–1646 (2007)
Burton, A.M., Wilson, S., Cowan, M., Bruce, V.: Face recognition in poor-quality video: Evidence from security surveillance. Psychol. Sci. 10(3), 243248 (1999)
Grgic, M., Delac, K., Grgic, S.: SCface–surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2011)
Beveridge, J.R., Phillips, P.J., Bolme, D.S., Draper, B.A., Givens, G.H., Lui, Y.M., Teli, M.N., Zhang, H., Scruggs, W.T., Bowyer, K.W., Flynn, P.J., Cheng, S.: The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013)
Taigman, Y., Yang, M., Ranzato, M.’A., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CoRR (2014)
Lu, C., Tang, X.: Learning the face prior for Bayesian face recognition. In: Computer Vision ECCV 2014, volume 8692 of Lecture Notes in Computer Science. Springer International Publishing, Switzerland (2014)
Moghaddam, B., Wahid, W., Pentland, A.: Beyond eigenfaces: probabilistic matching for face recognition. In: FG, pp. 30–35. IEEE Computer Society (1998)
Beveridge, J.R., Zhang, H., Flynn, P.J., Lee, Y., Liong, V.E., Lu, J., de Assis Angeloni, M., de Freitas Pereira, T., Li, H., Hua G., Struc, V., Krizaj, J., Phillips, P.J.: The IJCB 2014 PaSC video face and person recognition competition. In: IEEE International Joint Conference on Biometrics IJCB, pp. 1–8 (2014)
Li, H., Hua, G., Shen, X., Lin, Z., Brandt, J.: Eigen-PEP for video face recognition. In: Asian Conference on Computer Vision (ACCV) (2014)
Cox, D., Pinto, N.: Beyond simple features: a large-scale feature search approach to unconstrained face recognition. In: Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on, pp. 8–15, Mar 2011
Ruiz-del Solar, J., Verschae, R., Correa, M.: Recognition of faces in unconstrained environments: A comparative study. EURASIP J. Adv. Signal Process. 2009(1), 2009
McCool, C., Wallace, R., McLaren, M., El Shafey, L., Marcel, S.: Session variability modeling for face authentication. IET Biometrics 2(3), 117–129 (2013)
Khoury, E., Günther, M., El Shafey, L., Marcel, S.: On the improvements of uni-modal and bi-modal fusions of speaker and face recognition for mobile biometrics. In: Biometric Technologies in Forensic Science, Oct 2013
C. Atanasoaei. Multivariate Boosting with Look-up Tables for Face Processing. PhD thesis, EPFL, 2012
Uřičář, M., Franc, V., Hlaváč, V.: Detector of facial landmarks learned by the structured output SVM. In: Csurka, G., Braz, J. (eds.) VISAPP ’12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications, vol. 1, pp. 547–556. SciTePress (2012)
K. Ram´ırez-Guti´errez, D. Cruz-P´erez, and H. P´erez-Meana. Face recognition and verification using histogram equalization. In ACS, WSEAS, 85–89 (2010)
H.Wang, S. Z. Li, and Y.Wang. Face recognition under varying lighting conditions using self quotient image. In FG. IEEE Computer Society, 819–824, (2004)
L. Wiskott, J.-M. Fellous, N. Kr¨uger, and C. van der Malsburg. Face recognition by elastic bunch graph matching. Transactions on Pattern Analysis and Machine Intelligence, 19, 775–779 (1997)
M. G¨unther. Statistical Gabor Graph Based Techniques for the Detection, Recognition, Classification, and Visualization of Human Faces. PhD thesis, Institut f¨ur Neuroinformatik, Technische Universit¨at Ilmenau, Germany (2011)
González Jiménez, D., Bicego, M., Tangelder, J.W.H., Schouten, B.A.M., Ambekar, O.O., Alba-Castro, J., Grosso, E., Tistarelli, M.: Distance measures for Gabor jets-based face authentication: a comparative evaluation. In: ICB, pp. 474–483. Springer (2007)
W. Zhang, S. Shan, L. Qing, X. Chen, and W. Gao. Are Gabor phases really useless for face recognition? Pattern Analysis & Applications, 12, 301–307 (2009)
T. Ojala, M. Pietik¨ainen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1):51–59 (1996)
T. Ojala, M. Pietik¨ainen, and T. M¨aenp¨a¨a. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987 2002
T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary patterns. In ECCV. Springer, 469–481 (2004)
F. Cardinaux, C. Sanderson, and S. Marcel. Comparison of MLP and GMM classifiers for face verification on XM2VTS. In AVBPA, volume 2688 of LNCS, 911–920. Springer, (2003)
D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10(1-3):19–41 (2000)
J.-L. Gauvain and C.-H. Lee. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains. Transactions on Speech and Audio Processing, 2(2):291–298 (1994)
F. Cardinaux, C. Sanderson, and S. Bengio. User authentication via adapted statistical models of face images. Transactions on Signal Processing, 54(1):361–373 (2006)
R. J. Vogt and S. Sridharan. Explicit modelling of session variability for speaker verification. Computer Speech & Language, 22(1):17–38 (2008)
Wallace, R., McLaren, M., McCool, C., Marcel, S.: Inter-session variability modeling and joint factor analysis for face authentication. In: IJCB, pp. 1–8. IEEE (2011)
A. K. Jain, P. Flynn, and A. A. Ross. Handbook of Biometrics. Springer, 2008
E. Bailly-Bailli´ere et al. The BANCA database and evaluation protocol. In AVBPA, volume 2688 of LNCS, SPIE, 625–638 (2003)
G. B. Huang, V. Jain, and E. G. Learned-Miller. Unsupervised joint alignment of complex images. In ICCV, IEEE, 1–8 (2007)
M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches for face identification. In ICCV, IEEE, 498–505 (2009)
Khoury, E., El Shafey, L., McCool, C., Günther, M., Marcel, S.: Bi-modal biometric authentication on mobile phones in challenging conditions. In: Image and Vision Computing (2013)
Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: VWhich parts of the face give out your identity? In: CVPR, pp. 641–648. IEEE Computer Society (2011)
Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large- scale Chinese face database and baseline evaluations. Syst. Man Cybern. Part A Syst. Hum. 38, 149–161 (2008)
Arashloo, S.R., Kittler, J.: Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features. IEEE Trans. Inf. Forensics Secur. 9(12), 2100–2109 (2014)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: IEEE International Conference on Computer Vision (ICCV), Oct 2009
Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: A joint formulation. In: Proceedings of the 12th European Conference on Computer Vision—Volume Part III, pp. 566–579 (2012)
Khoury, E., Senac, C., Joly, P.: Face-and-clothing based people clustering in video content. In: Proceedings of the International Conference on Multimedia Information Retrieval, MIR ’10, pp. 295–304. ACM, New York, NY, USA, (2010)
A. Dutta, M. Günther, L. El Shafey, S. Marcel, R. Veldhuis, and L. Spreeuwers. Impact of eye detection error on face recognition performance. IET Biometrics, 2014
Auckenthaler, R., Carey, M., Lloyd-Thomas, H.: Score normalization for text-independent speaker verification systems. Digit. Signal Proc. 10(1), 42–54 (2000)
Barr, J.R., Bowyer, K.W., Flynn, P.J., Biswas, S.: Face recognition from video: a review. Int. J. Pattern Recogn. Artif. Intell. 26(5) (2012)
Müller, M.K., Tremer, M., Bodenstein, C., Würtz, R.P.: Learning invariant face recognition from examples. Neural Netw. 41:137–146 (2013)
Acknowledgements
This evaluation has received funding from the European Community’s FP7 under grant agreements 238803 (BBfor2: bbfor2.net ) and 284989 (BEAT: beat-eu.org ). This work is based on open-source software provided by the Idiap Research Institute and the Colorado State University. The authors want to thank all contributors of the software for their great work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Günther, M., Shafey, L.E., Marcel, S. (2016). Face Recognition in Challenging Environments: An Experimental and Reproducible Research Survey. In: Bourlai, T. (eds) Face Recognition Across the Imaging Spectrum. Springer, Cham. https://doi.org/10.1007/978-3-319-28501-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-28501-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-28499-6
Online ISBN: 978-3-319-28501-6
eBook Packages: Computer ScienceComputer Science (R0)