Nothing Special   »   [go: up one dir, main page]

Skip to main content

Can Two Hidden Layers Make a Difference?

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

Abstract

Representations of multivariable Boolean functions by one and two-hidden-layer Heaviside perceptron networks are investigated. Sufficient conditions are given for representations with the numbers of network units depending on the input dimension d linearly and polynomially. Functions with such numbers depending on d exponentially or having some weights exponentially large are described in terms of properties of their communication matrices. A mathematical formalization of the concept of “highly-varying functions” is proposed. There is given an example of such function which can be represented by a network with two hidden layers with merely d units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Chow, T.W.S., Cho, S.Y.: Neural Networks and Computing: Learning Algorithms and Applications. World Scientific (2007)

    Google Scholar 

  3. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  4. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MathSciNet  Google Scholar 

  5. Park, J., Sandberg, I.: Approximation and radial-basis-function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  6. Mhaskar, H.N.: Versatile Gaussian networks. In: Proceedings of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  7. Kůrková, V.: Some Comparisons of Networks with Radial and Kernel Units. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 17–24. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17, 69–77 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kainen, P.C., Kůrková, V., Sanguineti, M.: Dependence of computational models on input dimension: Tractability of approximation and optimization tasks. IEEE Trans. on Information Theory 58(2), 1203–1214 (2012)

    Article  Google Scholar 

  11. Maiorov, V., Pinkus, A.: Lower bounds for approximation by MLP neural networks. Neurocomputing 25, 81–91 (1999)

    Article  MATH  Google Scholar 

  12. Maiorov, V.: On best approximation by ridge functions. J. of Approximation Theory 99, 68–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation (2006)

    Google Scholar 

  14. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  15. Grochowski, M., Duch, W.: Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007, Part I. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable functions for local kernel machines. In: Advances in Neural Information Processing Systems, vol. 18, pp. 107–114. MIT Press (2006)

    Google Scholar 

  17. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of dimensionality for local kernel machines. Technical Report 1258, Département d’Informatique et Recherche Opérationnelle, Université de Montréal (2005)

    Google Scholar 

  18. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. on Information Theory 44, 525–536 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shläfli, L.: Gesamelte mathematische abhandlungen, Band 1 (1950)

    Google Scholar 

  20. Erdös, P., Spencer, J.H.: Probabilistic Methods in Combinatorics. Academic Press (1974)

    Google Scholar 

  21. Kůrková, V.: Dimension-independent rates of approximation by neural networks. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing, pp. 261–270. Birkhäuser, Boston (1997)

    Chapter  Google Scholar 

  22. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press (1992)

    Google Scholar 

  23. Kůrková, V.: Complexity estimates based on integral transforms induced by computational units. Neural Networks 33, 160–167 (2012)

    Article  MATH  Google Scholar 

  24. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real–valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)

    Article  Google Scholar 

  25. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8(2), 18–24 (1976)

    Article  Google Scholar 

  26. Kůrková, V., Sanguineti, M.: Comparison of worst-case errors in linear and neural network approximation. IEEE Trans. on Information Theory 48, 264–275 (2002)

    Article  MATH  Google Scholar 

  27. Hajnal, A., Maas, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. In: Proc. 28th Annual Symposium on Foundations of Computer Science, pp. 99–110. IEEE (1987)

    Google Scholar 

  28. Hajnal, A., Maas, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. J. of Computer and System Sciences 46, 129–154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kůrková, V., Sanguineti, M. (2013). Can Two Hidden Layers Make a Difference?. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics