Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Comparisons of Networks with Radial and Kernel Units

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

Two types of computational models, radial-basis function networks with units having varying widths and kernel networks where all units have a fixed width, are investigated in the framework of scaled kernels. The impact of widths of kernels on approximation of multivariable functions, generalization modelled by regularization with kernel stabilizers, and minimization of error functionals is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broomhead, D.S., Lowe, D.: Error bounds for approximation with neural networks. Complex Systems 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Girosi, F., Poggio, T.: Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945), 978–982 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  4. Park, J., Sandberg, I.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)

    Article  Google Scholar 

  5. Park, J., Sandberg, I.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  6. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

    Article  MATH  Google Scholar 

  7. Gnecco, G., Kůrková, V., Sanguineti, M.: Some comparisons of complexity in dictionary-based and linear computational models. Neural Networks 24(1), 171–182 (2011)

    Article  MATH  Google Scholar 

  8. Gnecco, G., Kůrková, V., Sanguineti, M.: Can dictionary-based computational models outperform the best linear ones? Neural Networks 24(8), 881–887 (2011)

    Article  MATH  Google Scholar 

  9. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Computation 10, 1455–1480 (1998) (AI memo 1606)

    Google Scholar 

  10. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of AMS 39, 1–49 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Notices of AMS 50, 537–544 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Kůrková, V.: Inverse problems in learning from data. In: Kaslik, E., Sivasundaram, S. (eds.) Recent advances in dynamics and control of neural networks. Cambridge Scientific Publishers (to appear)

    Google Scholar 

  13. Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. on Information Theory 52, 255–261 (2006)

    Article  MathSciNet  Google Scholar 

  14. Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  15. Mhaskar, H.N.: Versatile Gaussian networks. In: Proceedings of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  16. Rudin, W.: Functional Analysis. Mc Graw-Hill (1991)

    Google Scholar 

  17. Friedman, A.: Modern Analysis. Dover, New York (1982)

    MATH  Google Scholar 

  18. Schölkopf, B., Smola, A.J.: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  19. Bertero, M.: Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics 75, 1–120 (1989)

    Article  Google Scholar 

  20. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7, 219–269 (1995)

    Article  Google Scholar 

  21. Wahba, G.: Splines Models for Observational Data. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  22. Loustau, S.: Aggregation of SVM classifiers using Sobolev spaces. Journal of Machine Learning Research 9, 1559–1582 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  24. Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian basis function networks. In: Proceedings of ICANN 1994, pp. 471–474. Springer, London (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kůrková, V. (2012). Some Comparisons of Networks with Radial and Kernel Units. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics