Abstract
Two types of computational models, radial-basis function networks with units having varying widths and kernel networks where all units have a fixed width, are investigated in the framework of scaled kernels. The impact of widths of kernels on approximation of multivariable functions, generalization modelled by regularization with kernel stabilizers, and minimization of error functionals is analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Broomhead, D.S., Lowe, D.: Error bounds for approximation with neural networks. Complex Systems 2, 321–355 (1988)
Girosi, F., Poggio, T.: Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945), 978–982 (1990)
Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 273–297 (1995)
Park, J., Sandberg, I.: Universal approximation using radial–basis–function networks. Neural Computation 3, 246–257 (1991)
Park, J., Sandberg, I.: Approximation and radial basis function networks. Neural Computation 5, 305–316 (1993)
Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)
Gnecco, G., Kůrková, V., Sanguineti, M.: Some comparisons of complexity in dictionary-based and linear computational models. Neural Networks 24(1), 171–182 (2011)
Gnecco, G., Kůrková, V., Sanguineti, M.: Can dictionary-based computational models outperform the best linear ones? Neural Networks 24(8), 881–887 (2011)
Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Computation 10, 1455–1480 (1998) (AI memo 1606)
Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of AMS 39, 1–49 (2002)
Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Notices of AMS 50, 537–544 (2003)
Kůrková, V.: Inverse problems in learning from data. In: Kaslik, E., Sivasundaram, S. (eds.) Recent advances in dynamics and control of neural networks. Cambridge Scientific Publishers (to appear)
Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. on Information Theory 52, 255–261 (2006)
Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)
Mhaskar, H.N.: Versatile Gaussian networks. In: Proceedings of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)
Rudin, W.: Functional Analysis. Mc Graw-Hill (1991)
Friedman, A.: Modern Analysis. Dover, New York (1982)
Schölkopf, B., Smola, A.J.: Learning with Kernels – Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge (2002)
Bertero, M.: Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics 75, 1–120 (1989)
Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7, 219–269 (1995)
Wahba, G.: Splines Models for Observational Data. SIAM, Philadelphia (1990)
Loustau, S.: Aggregation of SVM classifiers using Sobolev spaces. Journal of Machine Learning Research 9, 1559–1582 (2008)
Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)
Kůrková, V., Neruda, R.: Uniqueness of functional representations by Gaussian basis function networks. In: Proceedings of ICANN 1994, pp. 471–474. Springer, London (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kůrková, V. (2012). Some Comparisons of Networks with Radial and Kernel Units. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-33266-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33265-4
Online ISBN: 978-3-642-33266-1
eBook Packages: Computer ScienceComputer Science (R0)