Abstract
Vanishing points can be used to exploit the parallel and orthogonal lines in 3D scenes thus the cameras’ orientation parameters for vision processing. This paper proposed a vanishing point detection and estimation method in the dual image space. First, edge line segments are extracted. Second, based on the point-line duality theory, lines are transformed into points in the dual space where the transformed points belong to the same vanishing point form collinear clusters. Third, vanishing points are estimated by grouping and fitting straight lines across those clusters. The novel points of our method are: 1) automatically grouping the edge line segments that are the support of a vanishing point; 2) calculating the vanishing points by fitting straight lines in the dual space. Experiment results validated the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K.: Using Vanishing Points for Camera Calibration and Coarse 3D Reconstruction from a Single Image. The Visual Computer (S0178-2789) 16(7), 396–410 (2000)
Foroosh, H., Cao, X., Balci, M.: Metrology in Uncalibrated Images Given One Vanishing Point. In: IEEE International Conference on Image Processing, pp. III-361-4. IEEE, USA (2005)
Li, B., Peng, K., Ying, X., Zha, H.: Simultaneous Vanishing Point Detection and Camera Calibration from Single Images. Advances in Visual Computing (2010)
Almansa, A., Desolneux, A., Vamech, S.: Vanishing Point Detection without Any A Priori Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 502–507 (2003)
Tuytelaars, T., Proesmans, M., Van Gool, L.: The Cascaded Hough Transform. In: Proc. Int’l Conf. Image Processing (ICIP 1997), vol. 2, pp. 736–739 (1997)
Rother, C.: A New Approach for Vanishing Point Detection in Architectural Environments. In: Proc. British Machine Vision Conf. (2000)
Barnard, S.T.: Interpreting perspective images. Artificial Intelligence 21, 435–462 (1983)
Lutton, E., Maitre, H., Lopez-Krahe, J.: Contribution to be the Determination of Vanishing Points using Hough Transform. IEEE Transaction on Pattern Analysis and Machine Intelligence 16(4), 430–438 (1994)
Minagawa, A., Tagawa, N., Moriya, T., Gotoh, T.: Line Clustering with Vanishing Point and Vanishing Line. In: Proceedings of International Conference on Image Analysis and Processing, pp. 388–393 (1999)
Ebrahimpou, R., Rasoolinezhad, R., Hajiabolhasani, Z., Ebrahimi, M.: Vanishing point detection in corridors: using Hough transform and K-means clustering. IET Computer Vision, 40–51 (2012)
Schmitt, F., Priese, L.: Vanishing Point Detection with an Intersection Point Neighborhood. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 132–143. Springer, Heidelberg (2009)
Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and Curves in Pictures. Communications of Association for Computing Machinery 15(1), 11–15 (1972)
Grompone von Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 722–732 (2010)
Antone, M.E., Teller, S.: Automatic Recovery of Relative Camera Rotations for Urban Scenes. In: Proc. CVPR 2000, pp. 282–289 (2000)
Bradski, G., Kaehler, A.: Learning OpenCV, pp. 432–437. O’Reilly Media, Inc. (2008)
Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE CDC, San Diego, CA, USA, pp. 761–766 (1979)
Babuska, R., van der Veen, P.J., Kaymak, U.: Improved covariance estimation for Gustafson–Kessel clustering. In: Proc. of the IEEE Internat. Conf. on Fuzzy Systems, pp. 1081–1085 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, YG., Wang, X., Feng, LB., Chen, G., Wu, TP., Tang, CK. (2013). Calculating Vanishing Points in Dual Space. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-36669-7_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36668-0
Online ISBN: 978-3-642-36669-7
eBook Packages: Computer ScienceComputer Science (R0)