Nothing Special   »   [go: up one dir, main page]

Skip to main content

Calculating Vanishing Points in Dual Space

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

Abstract

Vanishing points can be used to exploit the parallel and orthogonal lines in 3D scenes thus the cameras’ orientation parameters for vision processing. This paper proposed a vanishing point detection and estimation method in the dual image space. First, edge line segments are extracted. Second, based on the point-line duality theory, lines are transformed into points in the dual space where the transformed points belong to the same vanishing point form collinear clusters. Third, vanishing points are estimated by grouping and fitting straight lines across those clusters. The novel points of our method are: 1) automatically grouping the edge line segments that are the support of a vanishing point; 2) calculating the vanishing points by fitting straight lines in the dual space. Experiment results validated the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K.: Using Vanishing Points for Camera Calibration and Coarse 3D Reconstruction from a Single Image. The Visual Computer (S0178-2789) 16(7), 396–410 (2000)

    Article  MATH  Google Scholar 

  2. Foroosh, H., Cao, X., Balci, M.: Metrology in Uncalibrated Images Given One Vanishing Point. In: IEEE International Conference on Image Processing, pp. III-361-4. IEEE, USA (2005)

    Google Scholar 

  3. Li, B., Peng, K., Ying, X., Zha, H.: Simultaneous Vanishing Point Detection and Camera Calibration from Single Images. Advances in Visual Computing (2010)

    Google Scholar 

  4. Almansa, A., Desolneux, A., Vamech, S.: Vanishing Point Detection without Any A Priori Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 502–507 (2003)

    Article  Google Scholar 

  5. Tuytelaars, T., Proesmans, M., Van Gool, L.: The Cascaded Hough Transform. In: Proc. Int’l Conf. Image Processing (ICIP 1997), vol. 2, pp. 736–739 (1997)

    Google Scholar 

  6. Rother, C.: A New Approach for Vanishing Point Detection in Architectural Environments. In: Proc. British Machine Vision Conf. (2000)

    Google Scholar 

  7. Barnard, S.T.: Interpreting perspective images. Artificial Intelligence 21, 435–462 (1983)

    Article  Google Scholar 

  8. Lutton, E., Maitre, H., Lopez-Krahe, J.: Contribution to be the Determination of Vanishing Points using Hough Transform. IEEE Transaction on Pattern Analysis and Machine Intelligence 16(4), 430–438 (1994)

    Article  Google Scholar 

  9. Minagawa, A., Tagawa, N., Moriya, T., Gotoh, T.: Line Clustering with Vanishing Point and Vanishing Line. In: Proceedings of International Conference on Image Analysis and Processing, pp. 388–393 (1999)

    Google Scholar 

  10. Ebrahimpou, R., Rasoolinezhad, R., Hajiabolhasani, Z., Ebrahimi, M.: Vanishing point detection in corridors: using Hough transform and K-means clustering. IET Computer Vision, 40–51 (2012)

    Google Scholar 

  11. Schmitt, F., Priese, L.: Vanishing Point Detection with an Intersection Point Neighborhood. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 132–143. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Duda, R.O., Hart, P.E.: Use of the Hough Transformation to Detect Lines and Curves in Pictures. Communications of Association for Computing Machinery 15(1), 11–15 (1972)

    Article  Google Scholar 

  13. Grompone von Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 722–732 (2010)

    Article  Google Scholar 

  14. Antone, M.E., Teller, S.: Automatic Recovery of Relative Camera Rotations for Urban Scenes. In: Proc. CVPR 2000, pp. 282–289 (2000)

    Google Scholar 

  15. Bradski, G., Kaehler, A.: Learning OpenCV, pp. 432–437. O’Reilly Media, Inc. (2008)

    Google Scholar 

  16. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE CDC, San Diego, CA, USA, pp. 761–766 (1979)

    Google Scholar 

  17. Babuska, R., van der Veen, P.J., Kaymak, U.: Improved covariance estimation for Gustafson–Kessel clustering. In: Proc. of the IEEE Internat. Conf. on Fuzzy Systems, pp. 1081–1085 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, YG., Wang, X., Feng, LB., Chen, G., Wu, TP., Tang, CK. (2013). Calculating Vanishing Points in Dual Space. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics