Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vanishing Points Estimation and Line Classification in a Manhattan World

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

The problem of estimating vanishing points for visual scenes under the Manhattan world assumption [1, 2] has been addressed for more than a decade. Surprisingly, the special characteristic of the Manhattan world that lines should be orthogonal or parallel to each other is seldom well utilized. In this paper, we present an algorithm that accurately and efficiently estimates vanishing points and classifies lines by thoroughly taking advantage of this simple fact in the Manhattan world with a calibrated camera. We first present a one-unknown-parameter representation of the 3D line direction in the camera frame. Then derive a quadratic which is employed to solve three orthogonal vanishing points formed by a line triplet. Finally, we develop a RANSAC-based approach to fulfill the task. The performance of proposed approach is demonstrated on the York Urban Database[3] and compared to the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coughlan, J.M., Yuille, A.L.: Manhattan world: Compass direction from a single image by bayesian inference. In: ICCV, pp. 941–947 (1999)

    Google Scholar 

  2. Coughlan, J.M., Yuille, A.L.: Manhattan world: Orientation and outlier detection by bayesian inference. Neural Computation 15, 1063–1088 (2003)

    Article  Google Scholar 

  3. Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: ICCV, pp. 1250–1257 (2009)

    Google Scholar 

  5. Mirzaei, F.M., Roumeliotis, S.I.: Optimal estimation of vanishing points in a manhattan world. In: ICCV, pp. 2454–2461 (2011)

    Google Scholar 

  6. Chen, H.: Pose determination from line-to-plane correspondences: Existence condition and closed-form solutions. TPAMI 13, 530–541 (1991)

    Article  Google Scholar 

  7. Schindler, G., Dellaert, F.: Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: CVPR, pp. 203–209 (2004)

    Google Scholar 

  8. Košecká, J., Zhang, W.: Video Compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002)

    Google Scholar 

  9. Wildenauer, H., Vincze, M.: Vanishing point detection in complex man-made worlds. In: ICIAP, pp. 615–622 (2007)

    Google Scholar 

  10. Aguilera, D.G., Lahoz, J.G., Codes, J.F.: A new method for vanishing points detection in 3d reconstruction from a single view. In: ISPRS (2005)

    Google Scholar 

  11. Förstner, W.: Optimal vanishing point detection and rotation estimation of single images of a legolandscene. In: ISPRS (2010)

    Google Scholar 

  12. Rother, C.: A new approach for vanishing point detection in architectural environments. In: BMVC (2002)

    Google Scholar 

  13. Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in images of architectural scenes. In: BMVC, pp. 382–392 (1999)

    Google Scholar 

  14. Tretyak, E., Barinova, O., Kohli, P., Lempitsky, V.: Geometric image parsing in man-made environments. IJCV 97, 305–321 (2012)

    Article  Google Scholar 

  15. Bazin, J.C., Seo, Y., Pollefeys, M.: Globally optimal line clustering and vanishing point estimation in manhattan world. In: CVPR (2012)

    Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  17. Mirzaei, F.M., Roumeliotis, S.I.: Globally optimal pose estimation from line correspondences. In: ICRA, pp. 5581–5588 (2011)

    Google Scholar 

  18. von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: A fast line segment detector with a false detection control. TPAMI 32, 722–732 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Koch, R. (2013). Vanishing Points Estimation and Line Classification in a Manhattan World. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics