Nothing Special   »   [go: up one dir, main page]

Skip to main content

Person Re-identification Based on Global Color Context

  • Conference paper
Computer Vision – ACCV 2010 Workshops (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6468))

Included in the following conference series:

Abstract

In this paper, we present a new solution to the problem of person re-identification. Person re-identification means to match observations of the same person across different time and possibly different cameras. The appearance based person re-identification must deal with several challenges such as variations of illumination conditions, poses and occlusions. Our proposed method inspires from the spirit of self-similarity. Self-similarity is an attractive property in visual recognition. Instead of comparing image descriptors between two images directly, the self-similarity measures how similar they are to a neighborhood of themselves. The self-similarities of image patterns within the image are modeled in two different ways in the proposed Global Color Context (GCC) method. The spatial distributions of self-similarities w.r.t. color words are combined to characterize the appearance of pedestrians. Promising results are obtained in the public ETHZ database compared with state-of-art performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ferencz, A., Learned-Miller, E.G., Malik, J.: Learning to locate informative features for visual identification. International Journal of Computer Vision 77, 3–24 (2008)

    Article  Google Scholar 

  2. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  4. Shet, V.D., Harwood, D., Davis, L.S.: Multivalued default logic for identity maintenance in visual surveillance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 119–132. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking across multiple cameras with disjoint views. In: Proceedings of International Conference on Computer Vision, pp. 952–957 (2003)

    Google Scholar 

  6. Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-independent action recognition from temporal self-similarities. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2010)

    Google Scholar 

  7. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  8. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)

    Google Scholar 

  9. Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. In: Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing (2009)

    Google Scholar 

  10. Gilbert, A., Bowden, R.: Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 125–136. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Javed, O., Shafique, K., Shah, M.: Appearance modeling for tracking in multiple non-overlapping cameras. In: Proceedings of Computer Vision and Pattern Recognition, pp. 26–33 (2005)

    Google Scholar 

  12. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (2010)

    Google Scholar 

  13. van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding 113, 48–62 (2009)

    Article  Google Scholar 

  15. Schwartz, W., Kembhavi, A., Harwood, D., Davis, L.: Human detection using partial least squares analysis. In: Proceedings of International Conference on Computer Vision (2009)

    Google Scholar 

  16. Takala, V., Cai, Y., Pietikäinen, M.: Boosting clusters of samples for sequence matching in camera networks. In: Proceedings of International Conference on Pattern Recognition (2010)

    Google Scholar 

  17. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)

    Article  Google Scholar 

  18. Ess, A., Leibe, B., Schindler, K., Gool, L.V.: A mobile vision system for robust multi-person tracking. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, Y., Pietikäinen, M. (2011). Person Re-identification Based on Global Color Context. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6468. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22822-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22822-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22821-6

  • Online ISBN: 978-3-642-22822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics