Abstract
Person re-identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. The problem is fundamentally challenging due to appearance variations resulting from differing poses, illumination and configurations of camera views. To deal with these difficulties, we propose a novel visual word co-occurrence model. We first map each pixel of an image to a visual word using a codebook, which is learned in an unsupervised manner. The appearance transformation between camera views is encoded by a co-occurrence matrix of visual word joint distributions in probe and gallery images. Our appearance model naturally accounts for spatial similarities and variations caused by pose, illumination & configuration change across camera views. Linear SVMs are then trained as classifiers using these co-occurrence descriptors. On the VIPeR [1] and CUHK Campus [2] benchmark datasets, our method achieves 83.86% and 85.49% at rank-15 on the Cumulative Match Characteristic (CMC) curves, and beats the state-of-the-art results by 10.44% and 22.27%.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: 10th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS) (September 2007)
Zhao, R., Ouyang, W., Wang, X.: Person re-identification by salience matching. In: ICCV (2013)
Vezzani, R., Baltieri, D., Cucchiara, R.: People reidentification in surveillance and forensics: A survey. ACM Comput. Surv. 46(2), 29:1–29:37 (2013)
Banerjee, P., Nevatia, R.: Learning neighborhood cooccurrence statistics of sparse features for human activity recognition. In: AVSS, pp. 212–217 (2011)
Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: CVPR (June 2008)
Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Graph Cut Based Inference with Co-occurrence Statistics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 239–253. Springer, Heidelberg (2010)
Smola, A.J., Gretton, A., Song, L., Schölkopf, B.: A Hilbert Space Embedding for Distributions. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 13–31. Springer, Heidelberg (2007)
Jebara, T., Kondor, R., Howard, A.: Probability product kernels. JMLR 5, 819–844 (2004)
Bird, N.D., Masoud, O., Papanikolopoulos, N.P., Isaacs, A.: Detection of loitering individuals in public transportation areas. Trans. Intell. Transport. Sys. 6(2), 167–177 (2005)
Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. CVPR 2, 1528–1535 (2006)
Bazzani, L., Cristani, M., Perina, A., Murino, V.: Multiple-shot person re-identification by chromatic and epitomic analyses. Pattern Recogn. Lett. 33(7), 898–903 (2012)
Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: CVPR, pp. 3586–3593 (2013)
Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR, pp. 2360–2367 (2010)
Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)
Prosser, B., Zheng, W.S., Gong, S., Xiang, T., Mary, Q.: Person re-identification by support vector ranking. In: BMVC, vol. 1, p. 5 (2010)
Bauml, M., Stiefelhagen, R.: Evaluation of local features for person re-identification in image sequences. In: AVSS, pp. 291–296 (2011)
Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human re-identification by mean riemannian covariance grid. In: AVSS, pp. 179–184 (2011)
Ma, B., Su, Y., Jurie, F.: Bicov: a novel image representation for person re-identification and face verification. In: BMVC (2012)
Liu, C., Gong, S., Loy, C.C., Lin, X.: Person Re-identification: What Features Are Important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012)
Nguyen, V.-H., Nguyen, K., Le, D.-D., Duong, D.A., Satoh, S.: Person Re-identification Using Deformable Part Models. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part III. LNCS, vol. 8228, pp. 616–623. Springer, Heidelberg (2013)
Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian Recognition with a Learned Metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011)
Li, W., Zhao, R., Wang, X.: Human Reidentification with Transferred Metric Learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013)
Mignon, A., Jurie, F.: PCCA: a new approach for distance learning from sparse pairwise constraints. In: CVPR, pp. 2666–2672 (2012)
Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR, pp. 649–656 (2011)
Porikli, F.: Inter-camera color calibration by correlation model function. In: ICIP, vol 2. pp. II-133 (2003)
Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views. Comput. Vis. Image Underst. 109(2), 146–162 (2008)
Zheng, W.S., Gong, S., Xiang, T.: Re-identification by relative distance comparison. IEEE TPAMI 35(3), 653–668 (2013)
Pedagadi, S., Orwell, J., Velastin, S., Boghossian, B.: Local fisher discriminant analysis for pedestrian re-identification. In: CVPR, pp. 3318–3325 (2013)
van Gemert, J., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1271–1283 (2010)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)
Hariharan, B., Malik, J., Ramanan, D.: Discriminative Decorrelation for Clustering and Classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 459–472. Springer, Heidelberg (2012)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. JMLR 9, 1871–1874 (2008)
Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: PETS, pp. 47–47 (2007)
Li, W., Wang, X.: Locally aligned feature transforms across views. In: CVPR, pp. 3594–3601 (June 2013)
Zhang, Z., Warrell, J., Torr, P.H.S.: Proposal generation for object detection using cascaded ranking svms. In: IEEE CVPR, pp. 1497–1504 (2011)
Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: Bing: Binarized normed gradients for objectness estimation at 300fps. In: IEEE CVPR (2014)
Zhang, Z., Li, Z.N., Drew, M.S.: Adamkl: A novel biconvex multiple kernel learning approach. In: IEEE 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2126–2129 (2010)
Zhang, Z., Sturgess, P., Sengupta, S., Crook, N., Torr, P.H.: Efficient discriminative learning of parametric nearest neighbor classifiers. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2232–2239. IEEE (2012)
Zhang, Z., Ladicky, L., Torr, P., Saffari, A.: Learning anchor planes for classification. In: Advances in Neural Information Processing Systems, pp. 1611–1619 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, Z., Chen, Y., Saligrama, V. (2015). A Novel Visual Word Co-occurrence Model for Person Re-identification. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8927. Springer, Cham. https://doi.org/10.1007/978-3-319-16199-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-16199-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16198-3
Online ISBN: 978-3-319-16199-0
eBook Packages: Computer ScienceComputer Science (R0)