Nothing Special   »   [go: up one dir, main page]

Skip to main content

Collaborative Optimization under a Control Framework for ATSP

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6728))

Included in the following conference series:

  • 3102 Accesses

Abstract

A collaborative optimization algorithm under a control framework is developed for the asymmetric traveling salesman problem (ATSP). The collaborative approach is not just a simple combination of two methods, but a deep collaboration in a manner like the feedback control. A notable feature of the approach is to make use of the collaboration to reduce the search space while maintaining the optimality. Compared with the previous work of the reduction procedure by Carpaneto, Dell’Amico et al. (1995) we designed a tighter and more generalized reduction procedure to make the collaborative method more powerful. Computational experiments on benchmark problems are given to exemplify the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1161–1172 (2004)

    Article  Google Scholar 

  2. Carpaneto, G., Dell’Amico, M., et al.: Exact solution of large-scale, asymmetric traveling salesman problems. ACM Trans. Math. Softw. 21(4), 394–409 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, I.-C., Kim, S.-I., et al.: A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem. Comput. Oper. Res. 30(5), 773–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, J., Realff, M.J., et al.: An algorithmic framework for improving heuristic solutions Part I. A deterministic discount coupon traveling salesman problem Computers & Chemical Engineering 28(1): 1285-1296 (2004). Computers & Chemical Engineering 28(1), 1285–1296 (2004)

    Article  Google Scholar 

  5. Dell’Amico, M., Toth, P.: Algorithms and codes for dense assignment problems: the state of the art. Discrete Applied Mathematics 100(1-2), 17–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  7. Fiechter, C.N.: A parallel tabu search algorithm for large traveling salesman problems. Discrete Appl. Math. 51(3), 243–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischetti, M., Toth, P.: A Polyhedral Approach to the Asymmetric Traveling Salesman Problem. Management Science 43(11), 1520–1536 (1997)

    Article  MATH  Google Scholar 

  9. Glover, F., Gutin, G., et al.: Construction heuristics for the asymmetric TSP. European Journal of Operational Research 129(3), 555–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  11. John, D.L.: An improved solution to the traveling salesman problem with thousands of nodes. Commun. ACM 27(12), 1227–1236 (1984)

    Article  Google Scholar 

  12. Jourdan, L., Basseur, M., et al.: Hybridizing exact methods and metaheuristics: A taxonomy. European Journal of Operational Research 199(3), 620–629 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karp, R.M.: A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem. SIAM Journal on Computing 8(4), 561–573 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Laarhoven, P.J.v., Aarts, E.H.: Simulated Annealing: Theory and Applications. Mathematics and Its Applications. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  15. Marco, D., Christian, B.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2-3), 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miller, D.L., Pekny, J.F.: Exact Solution of Large Asymmetric Traveling Salesman Problems. Science 251(4995), 754–761 (1991)

    Article  Google Scholar 

  17. Pan, C., Yang, G.K.: A method of solving a large-scale rolling batch scheduling problem in steel production using a variant of column generation. Comput. Ind. Eng. 56(1), 165–178 (2009)

    Article  Google Scholar 

  18. Tang, L.X., Liu, J.Y., et al.: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex. European Journal of Operational Research 124(2), 267–282 (2000)

    Article  MATH  Google Scholar 

  19. Turkensteen, M., Ghosh, D., et al.: Tolerance-based Branch and Bound algorithms for the ATSP. European Journal of Operational Research 189(3), 775–788 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, J., Zhu, J., Yang, GK., Pan, CC. (2011). Collaborative Optimization under a Control Framework for ATSP. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21515-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21515-5_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21514-8

  • Online ISBN: 978-3-642-21515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics