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Abstract. A collaborative optimization algorithm under a control framework is 
developed for the asymmetric traveling salesman problem (ATSP). The 
collaborative approach is not just a simple combination of two methods, but a 
deep collaboration in a manner like the feedback control. A notable feature of 
the approach is to make use of the collaboration to reduce the search space 
while maintaining the optimality. Compared with the previous work of the 
reduction procedure by Carpaneto, Dell'Amico et al. (1995) we designed a 
tighter and more generalized reduction procedure to make the collaborative 
method more powerful. Computational experiments on benchmark problems are 
given to exemplify the approach.  
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1   Introduction 

ATSP is one of the most well-known combinatorial optimization problems due both 
to its practical relevance and to its considerable difficulty. ATSP and its variations are 
commonly used models to formulate many practical applications, such as the 
scheduling of chemical process[3], the scheduling of steel production[17][18], and 
printed circuit board punching sequence problem [15], and so on. The problem is 
concerned with finding the shortest Hamiltonian cycle or tour in a weighted directed 
graph without loops and multiple arcs. Although simple to state, ATSP is very 
difficult to attack and much effort has been, and will continue to be, devoted to the 
design of good optimization algorithms. Roughly speaking, methods of solving ATSP 
problems can fall into three categories, i.e., rigorous, heuristic and hybridized. 
Rigorous method can guarantee the optimality of the solution obtained. Many 
algorithms have been developed for the exact solution of ATSP. The representative 
ones are the Branch-and-Bound (B&B) based on Assignment Problem (AP) 
relaxation[2][16]. Recently, Turkensteen, Ghosh et al.[19] reported a new branching 
rule in B&B algorithm which utilizes tolerances to indicate which arcs are preferred 
to save in the optimal ATSP tour. The Branch-and-Cut (B&C) algorithm is also 
explored by [8]. Since solving the ATSP optimally is NP-hard, especially in many 
real industrial problems, exact optimization algorithms require overlong execution 



356 J. Bai et al. 

 

time and huge memory. In most of cases they can’t produce an acceptable or even 
feasible solution given limit time. Hence, heuristics were dominating later even 
though they can’t provide any guarantee on the solution quality. Karp [13] presented 
the so-called Patching Algorithm (PA)-a convincible heuristic method, and showed 
that the heuristic solution asymptotically converges to the optimal solution as the size 
of ATSP tends to infinity. Glover, Gutin et al. [9] introduced several construction 
heuristics, and conducted a large number of computational experiments for several 
families of ATSP instances. In more recent years, metaheuristics are booming, such 
as genetic algorithms (GA) [3][10], simulated annealing (SA) [14], tabu search (TS) 
[7], ant colony optimization (ACO)[1][6][15], and so on. Rigorous and heuristic 
approaches have ever-conflicting advantages and disadvantages in terms of 
computational load and solution quality. Hence, growing attentions have been given 
to hybridized methods.  

The rest of the paper is organized as follows. In the next section, the mathematical 
formulation of the ATSP is presented. In section 3, the collaborative optimization 
framework is described. The key components that constitute the framework are 
illustrated in detail. Furthermore, theoretical analysis with respect to the performance 
is also presented briefly. In section 4, a large number of computational experiments 
are given. Finally, concluding remarks are included in section 5. 

2   Problem Description  

The ATSP can be formulated as an Integer Linear Programming 
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where ( , ) 1i jx = ( ),i j ∈ A , if the arc is selected in the optimal solution; 

and ( , ) 0i jx = otherwise. Apparently, equations (1)(2)(3) and (5) define the AP 

problem and constraints (4) forbid subtours. The number of constraints described in 
constraints (4) will be exponentially explosive as the size of the problem increases. 
This reason cause the computational difficult in solving large-scale ATSP. 


