Abstract
Equilibrium logic provides a logical foundation for the stable model semantics of logic programs. Recently, parametrized logic programming was introduced with the aim of presenting the syntax and natural semantics for parametrized logic programs, which are very expressive logic programs, in the sense that complex formulas are allowed to appear in the body and head of rules. Stable model semantics was defined for such parametrized logic programs. The aim of this paper is to introduce a parametrized version of equilibrium logic that extends parametrized logic programs to general theories, and to show how these can be used to characterize and to study strong equivalence of temporal logic programs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Strongly equivalent temporal logic programs. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 8–20. Springer, Heidelberg (2008)
Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg (2010)
Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg (2005)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, pp. 1070–1080 (1988)
Gonçalves, R., Alferes, J.: Parametrized logic programming. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg (2010)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log. 2(4), 526–541 (2001)
Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 147–160. Springer, Heidelberg (2004)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, R.I., pp. 46–57. IEEE Comput. Sci., Long Beach (1977)
Reiter, R.: A logic for default reasoning. Artificial Intelligence (13) (1980)
Zhou, Y., Lin, F., Zhang, Y.: General default logic. Ann. Math. Artif. Intell. 57(2), 125–160 (2009)
Zhou, Y., Zhang, Y.: Rule calculus: Semantics, axioms and applications. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 416–428. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gonçalves, R., Alferes, J.J. (2011). Parametrized Equilibrium Logic. In: Delgrande, J.P., Faber, W. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2011. Lecture Notes in Computer Science(), vol 6645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20895-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-20895-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20894-2
Online ISBN: 978-3-642-20895-9
eBook Packages: Computer ScienceComputer Science (R0)