Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stable Models for Temporal Theories

— Invited Talk —

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9345))

Abstract

This work makes an overview on an hybrid formalism that combines the syntax of Linear-time Temporal Logic (LTL) with a non-monotonic selection of models based on Equilibrium Logic. The resulting approach, called Temporal Equilibrium Logic, extends the concept of a stable model for any arbitrary modal temporal theory, constituting a suitable formal framework for the specification and verification of dynamic scenarios in Answer Set Programming (ASP). We will recall the basic definitions of this logic and explain their effects on some simple examples. After that, we will proceed to summarize the advances made so far, both in the fundamental realm and in the construction of reasoning tools. Finally, we will explain some open topics, many of them currently under study, and foresee potential challenges for future research.

This research was partially supported by Spanish MEC project TIN2013-42149-P and Xunta de Galicia grant GPC 2013/070.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    John McCarthy, the founder of logical knowledge representation and commonsense reasoning, showed in several occasions an explicit disapproval of modal logics. See for instance his position paper with the self-explanatory title “Modality, si! Modal logic, no!” [4].

  2. 2.

    Generally speaking, a disjunction of the form \(\varphi \vee {not }\; \varphi \) in ASP is not a tautology. When included in a rule head it is usually written as \(\{ \ \varphi \ \}\) and acts as a non-deterministic choice possibly allowing the derivation of \(\varphi \).

  3. 3.

    The axiomatisation of THT is currently under study [21].

  4. 4.

    In fact, Theorem 1 in the next section shows that LTL can be encoded into TEL by adding a simple axiom schema.

  5. 5.

    In fact, as shown in [31], this normal form can be even more restrictive: initial rules can be replaced by atoms, and we can avoid the use of literals of the form \(\lnot \!\bigcirc \!p\).

  6. 6.

    An incorrect proof was published in [38], but we still conjecture that the result might be positive.

References

  1. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, pp. 463–502. Edinburgh University Press, Edinburgh (1969)

    Google Scholar 

  2. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4, 67–95 (1986)

    Article  Google Scholar 

  3. McCarthy, J.: Circumscription: a form of non-monotonic reasoning. Artif. Intell. 13, 27–39 (1980)

    Article  MATH  Google Scholar 

  4. Mccarthy, J.: Modality, si! modal logic, no!. Stud. Logica. 59(1), 29–32 (1997)

    Article  MATH  Google Scholar 

  5. Castilho, M.A., Gasquet, O., Herzig, A.: Formalizing action and change in modal logic I: the frame problem. J. Logic Comput. 9(5), 701–735 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Giordano, L., Martelli, A., Schwind, C.: Ramification and causality in a modal action logic. J. Logic Comput. 10(5), 625–662 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baral, C., Zhao, J.: Nonmonotonic temporal logics for goal specification. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 236–242 (2007)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. J. Logic Program. 17, 301–321 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: Action languages. Linköping Electron. Art. Comput. Inf. Sci. 3(16) (1998). http://www.ep.liu.se/ea/cis/1998/016

  10. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MATH  Google Scholar 

  11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., et al. (eds.) The Logic Programming Paradigm, pp. 169–181. Springer, Heidelberg (1999)

    Google Scholar 

  12. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system for finite model computation. AI Commun. 24(2), 195–212 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

    Google Scholar 

  14. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), Seattle, Washington, pp. 1070–1080 (1988)

    Google Scholar 

  16. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)

    Book  MATH  Google Scholar 

  17. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)

    Google Scholar 

  18. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Proceedings of Non-Monotonic Extensions of Logic Programming (NMELP 1996), Bad Honnef, Germany, pp. 57–70 (1996)

    Google Scholar 

  19. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1930)

    Google Scholar 

  20. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-classical Logics 23(1–2), 2–24 (2013)

    Article  Google Scholar 

  21. Balbiani, P., Diéguez, M.: An axiomatisation of the logic of temporal here-and-there (2015) (unpublished draft)

    Google Scholar 

  22. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11 (1962)

    Google Scholar 

  23. Cabalar, P., Demri, S.: Automata-based computation of temporal equilibrium models. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 57–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Cabalar, P., Diéguez, M., Vidal, C.: An infinitary encoding of temporal equilibrium logic. In: Proceedings of the 31st International Conference on Logic Programming (ICLP 2015) (2015)

    Google Scholar 

  25. Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic. In: Working Notes of Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2014) (2014)

    Google Scholar 

  26. Pearce, D.J., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. Comput. Logic 2(4), 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  28. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna, Austria (2014)

    Google Scholar 

  29. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theor. Pract. Logic Program. 7(6), 745–759 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Fisher, M.: A resolution method for temporal logic. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 99–104. Morgan Kaufmann Publishers Inc. (1991)

    Google Scholar 

  31. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Bozzelli, L., Pearce, D.: On the complexity of temporal equilibrium logic. In: Proceedings of the 30th Annual ACM/IEEE Symposium of Logic in Computer Science (LICS 2015), Kyoto, Japan (2015, to appear)

    Google Scholar 

  33. Cabalar, P., Diéguez, M.: STeLP – a tool for temporal answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th International Conference on Logic programming (ICLP 1994), pp. 23–37 (1994)

    Google Scholar 

  35. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal logic programs. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 80–92. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  36. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47, 79–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Paving the way for temporal grounding. In: Proc. of the 28th International Conference on Logic Programming (ICLP 2012) (2012)

    Google Scholar 

  38. Cabalar, P., Diéguez, M.: Temporal stable models are LTL-representable. In: Proceedings of the 7th International Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP 2014) (2014)

    Google Scholar 

  39. Aguado, F., Pérez, G., Vidal, C.: Integrating temporal extensions of answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 23–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  40. Bertino, E., Mileo, A., Provetti, A.: PDL with preferences. In: 6th IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY 2005), pp. 213–222 (2005)

    Google Scholar 

Download references

Acknowledgements

This research is part of a long term project developed during the last eight years in the KR group from the University of Corunna and, especially, in close cooperation with Felicidad Aguado, Martín Diéguez, Gilberto Pérez and Concepción Vidal together with the regular collaborators David Pearce and Luis Fariñas. I am also especially thankful to Stèphane Demri, Philippe Balbiani, Andreas Herzig, Laura Bozzelli, Manuel Ojeda, Agustín Valverde, Stefania Costantini, Michael Fisher, Mirosław Truszczyński, Vladimir Lifschitz and Torsten Schaub for their useful discussions and collaboration at different moments on specific topics of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cabalar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cabalar, P. (2015). Stable Models for Temporal Theories. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2015. Lecture Notes in Computer Science(), vol 9345. Springer, Cham. https://doi.org/10.1007/978-3-319-23264-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23264-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23263-8

  • Online ISBN: 978-3-319-23264-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics