Nothing Special   »   [go: up one dir, main page]

Skip to main content

ReNCoDe: A Regulatory Network Computational Device

  • Conference paper
Genetic Programming (EuroGP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6621))

Included in the following conference series:

Abstract

In recent years, our biologic understanding was increased with the comprehension of the multitude of regulatory mechanisms that are fundamental in both processes of inheritance and of development, and some researchers advocate the need to explore computationally this new understanding. One of the outcomes was the Artificial Gene Regulatory (ARN) model, first proposed by Wolfgang Banzhaf. In this paper, we use this model as representation for a computational device and introduce new variation operators, showing experimentally that it is effective in solving a set of benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W.: Artificial Regulatory Networks and Genetic Programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, ch. 4, pp. 43–62. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  2. Davidson, E.H.: The regulatory genome: gene regulatory networks in development and evolution. Academic Press, London (2006)

    Google Scholar 

  3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  4. Field, A.P., Hole, G.: How to design and report experiments. Sage Publications Ltd., Thousand Oaks (2003)

    Google Scholar 

  5. Koza, J., Keane, M.: Genetic breeding of non-linear optimal control strategies for broom balancing. Analysis and Optimization of Systes 144, 47–56 (1990)

    Article  MATH  Google Scholar 

  6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs (Complex Adaptive Systems). MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  7. Kuo, P., et al.: Evolving dynamics in an artificial regulatory network model. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 571–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kuo, P.D., et al.: Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. Biosystems 85(3), 177–200 (2006)

    Article  MathSciNet  Google Scholar 

  9. Langdon, W.: Why ants are hard. Cognitive Science Research Papers, 193–201 (1998)

    Google Scholar 

  10. Nicolau, M., Schoenauer, M.: Evolving specific network statistical properties using a gene regulatory network model. In: Raidl, G., et al. (eds.) GECCO 2009: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 723–730. ACM, Montreal (2009)

    Google Scholar 

  11. Nicolau, M., et al.: Evolving Genes to Balance a Pole. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 196–207. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Whitley, D., et al.: Alternative evolutionary algorithms for evolving programs: evolution strategies and steady state GP. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 919–926. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopes, R.L., Costa, E. (2011). ReNCoDe: A Regulatory Network Computational Device. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds) Genetic Programming. EuroGP 2011. Lecture Notes in Computer Science, vol 6621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20407-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20407-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20406-7

  • Online ISBN: 978-3-642-20407-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics