Abstract
The relationship between genotype and phenotype is central to our understanding of development, evolution, and disease. This relationship is known as the genotype-phenotype map. Gene regulatory circuits occupy a central position in this map, because they control when, where, and to what extent genes are expressed, and thus drive fundamental physiological, developmental, and behavioral processes in living organisms as different as bacteria and humans. Mutations that affect these gene expression patterns are often implicated in disease, so it is important that gene regulatory circuits are robust to mutation. Such mutations can also bring forth beneficial phenotypic variation that embodies or leads to evolutionary adaptations or innovations. Here, we review recent theoretical and experimental work that sheds light on the robustness and evolvability of gene regulatory circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, P., Das Gupta, M., Joseph, A. P., et al. (2010). Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell, 22, 1174–1189. https://doi.org/10.1105/tpc.109.066647
Aguilar-Rodríguez, J., Payne, J. L., & Wagner, A. (2017). A thousand empirical adaptive landscapes and their navigability. Nature Ecology and Evolution, 1, 45. https://doi.org/10.1038/s41559-016-0045
Aguilar-Rodríguez, J., Peel, L., Stella, M., et al. (2018). The architecture of an empirical genotype-phenotype map. Evolution, 72, 1242. https://doi.org/10.1111/evo.13487
Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.
Albertin, C. B., Simakov, O., Mitros, T., et al. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524, 220–224. https://doi.org/10.1038/nature14668
Alonso, C. R., & Wilkins, A. S. (2005). The molecular elements that underlie developmental evolution. Nature Reviews. Genetics, 6, 709–715. https://doi.org/10.1038/nrg1676
Alvarez-Ponce, D., Aguilar-Rodríguez, J., & Fares, M. A. (2019). Molecular chaperones accelerate the evolution of their protein clients in yeast. Genome Biology and Evolution, 11(8), 2360–2375.
Amoutzias, G. D., Robertson, D. L., Oliver, S. G., & Bornberg-Bauer, E. (2004). Convergent evolution of gene networks by single-gene duplications in higher eukaryotes. EMBO Reports, 5, 274–279. https://doi.org/10.1038/sj.embor.7400096
Arbiza, L., Gronau, I., Aksoy, B. A., et al. (2013). Genome-wide inference of natural selection on human transcription factor binding sites. Nature Genetics, 45, 723–729. https://doi.org/10.1038/ng.2658
Babu, M. M., & Teichmann, S. A. (2003). Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Research, 31, 1234–1244. https://doi.org/10.1093/nar/gkg210
Badis, G., Berger, M. F., Philippakis, A. A., et al. (2009). Diversity and complexity in DNA recognition by transcription factors. Science, 324, 1720–1723. https://doi.org/10.1126/science.1162327
Baker, C. R., Tuch, B. B., & Johnson, A. D. (2011). Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proceedings of the National Academy of Sciences, 108, 7493–7498. https://doi.org/10.1073/pnas.1019177108
Barrera, L. A., Vedenko, A., Kurland, J. V., et al. (2016). Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science, 351, 1450–1454. https://doi.org/10.1126/science.aad2257
Basciotta, M. D., Christensen, R. G., Celniker, S. E., et al. (2013). Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Research, 23, 928–940. https://doi.org/10.1101/gr.151472.112
Berg, J., Willmann, S., & Lässig, M. (2004). Adaptive evolution of transcription factor binding sites. BMC Evolutionary Biology, 4, 42. https://doi.org/10.1186/1471-2148-4-42
Bergen, A. C., Olsen, G. M., & Fay, J. C. (2016). Divergent MLS1 promoters lie on a fitness plateau for gene expression. Molecular Biology and Evolution, 33, 1270–1279. https://doi.org/10.1093/molbev/msw010
Berger, M. F., Philippakis, A. A., Qureshi, A. M., et al. (2006). Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature Biotechnology, 24, 1429–1435. https://doi.org/10.1038/nbt1246
Bergman, A., & Siegal, M. L. (2003). Evolutionary capacitance as a general feature of complex gene networks. Nature, 424, 549–552. https://doi.org/10.1038/nature01765
Bhagwat, A. S., & Vakoc, C. R. (2015). Targeting transcription factors in cancer. Trends in Cancer, 1, 53–65. https://doi.org/10.1016/j.trecan.2015.07.001
Bloom, J. D., Labthavikul, S. T., Otey, C. R., & Arnold, F. H. (2006). Protein stability promotes evolvability. Proceedings of the National Academy of Sciences, 103, 5869–5874. https://doi.org/10.1073/pnas.0510098103
Bornberg-Bauer, E., & Albà, M. M. (2013). Dynamics and adaptive benefits of modular protein evolution. Current Opinion in Structural Biology, 23, 459–466.
Britten, R. J., & Davidson, E. H. (1969). Gene regulation for higher cells: A theory new facts regarding the organization of the genome. Science, 25, 349–357. https://doi.org/10.1016/j.ympev.2006.05.020
Burns, J. (1970). The synthetic problem and the genotype-phenotype relation in cellular metabolism. In C. H. Waddington (Ed.), Towards a theoretical biology. Volume 3: Drafts. An IUBS Symposium (pp. 47–51). Aldine Publishing Company.
Carey, M., Lin, Y. S., Green, M. R., & Ptashne, M. (1990). A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature, 345, 361–364. https://doi.org/10.1038/345361a0
Carroll, S. B. (2005). Evolution at two levels: On genes and form. PLoS Biology, 3, e245. https://doi.org/10.1371/journal.pbio.0030245
Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36. https://doi.org/10.1016/j.cell.2008.06.030
Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity. Molecular genetics and the evolution of animal design. Blackwell.
Ciliberti, S., Martin, O. C., & Wagner, A. (2007a). Innovation and robustness in complex regulatory gene networks. Proceedings of the National Academy of Sciences, 104, 13591–13596. https://doi.org/10.1073/pnas.0705396104
Ciliberti, S., Martin, O. C., & Wagner, A. (2007b). Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Computational Biology, 3, 0164–0173. https://doi.org/10.1371/journal.pcbi.0030015
Conant, G. C., & Wagner, A. (2004). Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proceedings of the Royal Society B: Biological Sciences, 271, 89–96. https://doi.org/10.1098/rspb.2003.2560
Cook, W. J., Mosley, S. P., Audino, D. C., et al. (1994). Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. The Journal of Biological Chemistry, 269, 9374–9379.
Cotterell, J., & Sharpe, J. (2010). An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients. Molecular Systems Biology, 6, 425. https://doi.org/10.1038/msb.2010.74
Crombach, A., Wotton, K. R., Jiménez-Guri, E., & Jaeger, J. (2016). Gap gene regulatory dynamics evolve along a genotype network. Molecular Biology and Evolution, 33, 1293–1307. https://doi.org/10.1093/molbev/msw013
Dalal, C. K., Zuleta, I. A., Mitchell, K. F., et al. (2016). Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression. eLife, 5, 1–24. https://doi.org/10.7554/eLife.18981
De Bodt, S., Raes, J., Van De Peer, Y., & Theißen, G. (2003). And then there were many: MADS goes genomic. Trends in Plant Science, 8, 475–483. https://doi.org/10.1016/j.tplants.2003.09.006
De Masi, F., Grove, C. A., Vedenko, A., et al. (2011). Using a structural and logics systems approach to infer bHLH-DNA binding specificity determinants. Nucleic Acids Research, 39, 4553–4563. https://doi.org/10.1093/nar/gkr070
de Visser, J. A. G. M., Hermisson, J., Wagner, G. P., et al. (2003). Perspective: Evolution and detection of genetic robustness. Evolution (N Y), 57, 1959–1972. https://doi.org/10.1554/02-750R
Degnan, B. M., Vervoort, M., Larroux, C., & Richards, G. S. (2009). Early evolution of metazoan transcription factors. Current Opinion in Genetics & Development, 19, 591–599. https://doi.org/10.1016/j.gde.2009.09.008
Dekel, E., & Alon, U. (2005). Optimality and evolutionary tuning of the expression level of a protein. Nature, 436, 588–592. https://doi.org/10.1038/nature03842
Dietzl, G., Chen, D., Schnorrer, F., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151–156. https://doi.org/10.1038/nature05954
Duveau, F., Toubiana, W., & Wittkopp, P. J. (2017). Fitness effects of cis-regulatory variants in the Saccharomyces cerevisiae TDH3 promoter. Molecular Biology and Evolution, 34, 2908–2912. https://doi.org/10.1093/molbev/msx224
Dykhuizen, D. E., Dean, A. M., & Hartl, D. L. (1987). Metabolic flux and fitness. Genetics, 115, 25–31.
Emerson, R. O., & Thomas, J. H. (2009). Adaptive evolution in zinc finger transcription factors. PLoS Genetics, 5, e1000325. https://doi.org/10.1371/journal.pgen.1000325
Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews. Genetics, 8, 610–618. https://doi.org/10.1038/nrg2146
Ezer, D., Zabet, N. R., & Adryan, B. (2015). Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression. Computational and Structural Biotechnology Journal, 10, 63–69. https://doi.org/10.1016/j.csbj.2014.07.005
Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31, 373–381. https://doi.org/10.1016/j.tig.2015.04.008
Galant, R., & Carroll, S. B. (2002). Evolution of a transcriptional repression domain in an insect Hox protein. Nature, 415, 910–913. https://doi.org/10.1038/nature717
Gama-Castro, S., Salgado, H., Peralta-Gil, M., et al. (2011). RegulonDB version 7.0: Transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Research, 39, D98–D105. https://doi.org/10.1093/nar/gkq1110
Garfield, D., Haygood, R., Nielsen, W. J., & Wray, G. A. (2012). Population genetics of cis-regulatory sequences that operate during embryonic development in the sea urchin Strongylocentrotus purpuratus. Evolution & Development, 14, 152–167. https://doi.org/10.1111/j.1525-142X.2012.00532.x
Gerdes, S. Y., Scholle, M. D., Campbell, J. W., et al. (2003). Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. Journal of Bacteriology, 185, 5673–5684. https://doi.org/10.1128/JB.185.19.5673
Giaever, G., Chu, A. M., Ni, L., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418, 387–391. https://doi.org/10.1038/nature00935
Giniger, E., & Ptashne, M. (1988). Cooperative DNA binding of the yeast transcriptional activator GAL4. Proceedings of the National Academy of Sciences of the United States of America, 85, 382–386.
Gotea, V., Visel, A., Westlund, J. M., et al. (2010). Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Research, 20, 565–577. https://doi.org/10.1101/gr.104471.109
Gu, Z., Steinmetz, L. M., Gu, X., et al. (2003). Role of duplicate genes in genetic robustness against null mutations. Nature, 421, 63–66. https://doi.org/10.1038/nature01198
Guttman, M., & Rinn, J. L. (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482, 339–346. https://doi.org/10.1038/nature10887
Harismendy, O., Notani, D., Song, X., et al. (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-γ 3 signalling response. Nature, 470, 264–270. https://doi.org/10.1038/nature09753
Hart, T., Chandrashekhar, M., Aregger, M., et al. (2015). High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 163, 1515–1526. https://doi.org/10.1016/j.cell.2015.11.015
He, X., & Zhang, J. (2006). Transcriptional reprogramming and backup between duplicate genes: Is it a genomewide phenomenon? Genetics, 172, 1363–1367. https://doi.org/10.1534/genetics.105.049890
Hillenmeyer, M. E., Fung, E., Wildenhain, J., et al. (2008). The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science, 320, 362–365. https://doi.org/10.1126/science.1150021
Hollenhorst, P. C., Shah, A. A., Hopkins, C., & Graves, B. J. (2007). Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes & Development, 21, 1882–1894. https://doi.org/10.1101/gad.1561707
Igler, C., Lagator, M., Tkačik, G., et al. (2018). Evolutionary potential of transcription factors for gene regulatory rewiring. Nature Ecology and Evolution, 2, 1633–1643. https://doi.org/10.1038/s41559-018-0651-y
Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25, 637–646. https://doi.org/10.1002/bies.10292
Itzkovitz, S., Tlusty, T., & Alon, U. (2006). Coding limits on the number of transcription factors. BMC Genomics, 7, 1–15. https://doi.org/10.1186/1471-2164-7-239
Jaeger, J. (2018). Shift happens: The developmental and evolutionary dynamics of the gap gene system. Current Opinion in Systems Biology, 11, 65–73. https://doi.org/10.1016/j.coisb.2018.08.004
Jiménez, A., Munteanu, A., Sharpe, J., et al. (2015). Dynamics of gene circuits shapes evolvability. Proceedings of the National Academy of Sciences of the United States of America, 112, 2103–2108. https://doi.org/10.1073/pnas.1411065112
Jimenez, J. I., Xulvi-Brunet, R., Campbell, G. W., et al. (2013). Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proceedings of the National Academy of Sciences of the United States of America, 110, 14984–14989. https://doi.org/10.1073/pnas.1307604110
Johnson, A. D., Meyer, B. J., & Ptashne, M. (1979). Interactions between DNA-bound repressors govern regulation by the lambda phage repressor. Proceedings of the National Academy of Sciences of the United States of America, 76, 5061–5065.
Kafri, R., Bar-Even, A., & Pilpel, Y. (2005). Transcription control reprogramming in genetic backup circuits. Nature Genetics, 37, 295–299. https://doi.org/10.1038/ng1523
Kasowski, M., Grubert, F., Heffelfinger, C., et al. (2010). Variation in transcription factor binding among humans. Science, 328, 232–235. https://doi.org/10.1126/science.1183621
Katainen, R., Dave, K., Pitkänen, E., et al. (2015). CTCF/cohesin-binding sites are frequently mutated in cancer. Nature Genetics, 47, 818–821. https://doi.org/10.1038/ng.3335
Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22, 437–467. https://doi.org/10.1354/vp.45-1-111
Keane, O. M., Toft, C., Carretero-Paulet, L., et al. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Research, 24, 1830–1841. https://doi.org/10.1101/gr.176792.114
Keren, H., Lev-Maor, G., & Ast, G. (2010). Alternative splicing and evolution: Diversification, exon definition and function. Nature Reviews. Genetics, 11, 345–355. https://doi.org/10.1038/nrg2776
Keren, L., Hausser, J., Lotan-Pompan, M., et al. (2016). Massively parallel interrogation of the effects of gene expression levels on fitness. Cell, 166, 1282–1294.e18. https://doi.org/10.1016/j.cell.2016.07.024
Khalid, F., Aguilar-Rodríguez, J., Wagner, A., & Payne, J. L. (2016). Genonets server–a web server for the construction, analysis and visualization of genotype networks. Nucleic Acids Research, 44, W70–W76.
Khurana, E., Fu, Y., Colonna, V., et al. (2013). Integrative annotation of variants from 1092 humans: Application to cancer genomics. Science, 342, 1235587. https://doi.org/10.1126/science.1235587
Kilpinen, H., Waszak, S. M., Gschwind, A. R., et al. (2013). Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science, 342, 744–747. https://doi.org/10.1126/science.1242463
Krivan, W., & Wasserman, W. W. (2001). A predictive model for regulatory sequences directing liver-specific transcription. Genome Research, 11, 1559–1566. https://doi.org/10.1101/gr.180601
Lachowiec, J., Lemus, T., Thomas, J. H., et al. (2013). The protein chaperone HSP90 can facilitate the divergence of gene duplicates. Genetics, 193, 1269–1277. https://doi.org/10.1534/genetics.112.148098
Lagator, M., Sarikas, S., Acar, H., et al. (2017). Regulatory network structure determines patterns of intermolecular epistasis. eLife, 6, 1–22. https://doi.org/10.7554/eLife.28921
Latchman, D. S. (2008). Eukaryotic transcription factors. Elsevier Science.
Lawrence, P. A. (1992). The making of a fly: The genetics of animal design. Wiley-Blackwell.
Lee, T. I., & Young, R. A. (2013). Transcriptional regulation and its misregulation in disease. Cell, 152, 1237–1251. https://doi.org/10.1016/j.cell.2013.02.014
Lehner, B. (2010). Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast. PLoS One, 5, e9035. https://doi.org/10.1371/journal.pone.0009035
Levine, M., & Tjian, R. (2003). Transcription regulation and animal diversity. Nature, 424, 147–151. https://doi.org/10.1038/nature01763
Li, P., Markson, J. S., Wang, S., et al. (2018). Morphogen gradient reconstitution reveals Hedgehog pathway design principles. Science, 360, 543–548. https://doi.org/10.1126/science.aao0645
Li, W., Zhu, Z., Chern, M., et al. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 170, 114–126.e15. https://doi.org/10.1016/j.cell.2017.06.008
Lifanov, A. P., Makeev, V. J., Nazina, A. G., & Papatsenko, D. A. (2003). Homotypic regulatory clusters in Drosophila. Genome Research, 13, 579–588. https://doi.org/10.1101/gr.668403
Liu, Q., Onal, P., Datta, R. R., et al. (2018). Ancient mechanisms for the evolution of the bicoid homeodomain’s function in fly development. eLife, 7, 1–28. https://doi.org/10.7554/eLife.34594
Liu, Y., Walavalkar, N. M., Dozmorov, M. G., et al. (2017). Identification of breast cancer associated variants that modulate transcription factor binding. PLoS Genetics, 13, 1–21. https://doi.org/10.1371/journal.pgen.1006761
Ludwig, M. Z., Bergman, C., Patel, N. H., & Kreitman, M. (2000). Evidence for stabilizing selection in a eukaryotic enhancer element. Nature, 403, 564–567. https://doi.org/10.1038/35000615
Lynch, V. J., May, G., & Wagner, G. P. (2011). Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature, 480, 383–386. https://doi.org/10.1038/nature10595
Lynch, V. J., Tanzer, A., Wang, Y., et al. (2008). Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proceedings of the National Academy of Sciences, 105, 14928–14933. https://doi.org/10.1073/pnas.0802355105
Madan Babu, M., Teichmann, S. A., & Aravind, L. (2006). Evolutionary dynamics of prokaryotic transcriptional regulatory networks. Journal of Molecular Biology, 358, 614–633. https://doi.org/10.1016/j.jmb.2006.02.019
Maerkl, S. J., & Quake, S. R. (2009). Experimental determination of the evolvability of a transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 106, 18650–18655. https://doi.org/10.1073/pnas.0907688106
Majithia, A. R., Tsuda, B., Agostini, M., et al. (2016). Prospective functional classification of all possible missense variants in PPARG. Nature Genetics, 48, 1570–1575. https://doi.org/10.1038/ng.3700
Masel, J., & Trotter, M. V. (2010). Robustness and evolvability. Trends in Genetics, 26, 406–414. https://doi.org/10.1016/j.tig.2010.06.002
Mathias, J. R., Zhong, H., Jin, Y., & Vershon, A. K. (2001). Altering the DNA-binding specificity of the yeast Matalpha 2 homeodomain protein. The Journal of Biological Chemistry, 276, 32696–32703. https://doi.org/10.1074/jbc.M103097200
Maurano, M. T., Humbert, R., Rynes, E., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337, 1190–1195. https://doi.org/10.1126/science.1222794
Maynard Smith, J. (1970). Natural selection and the concept of a protein space. Nature, 225, 563–564. https://doi.org/10.1038/225563a0
Melton, C., Reuter, J. A., Spacek, D. V., & Snyder, M. (2015). Recurrent somatic mutations in regulatory regions of human cancer genomes. Nature Genetics, 47, 710–716. https://doi.org/10.1038/ng.3332
Morgenstern, B., & Atchley, W. R. (2018). Evolution of bHLH transcription factors: Modular evolution by domain shuffling? Molecular Biology and Evolution, 16, 1654–1663.
Munro, D., Ghersi, D., & Singh, M. (2018). Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Computational Biology, 14, 1–17. https://doi.org/10.1371/journal.pcbi.1006290
Musunuru, K., Strong, A., Frank-Kamenetsky, M., et al. (2010). From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 466, 714–719. https://doi.org/10.1038/nature09266
Nadimpalli, S., Persikov, A. V., & Singh, M. (2015). Pervasive variation of transcription factor orthologs contributes to regulatory network evolution. PLoS Genetics, 11, e1005011. https://doi.org/10.1371/journal.pgen.1005011
Najafabadi, H. S., Garton, M., Weirauch, M. T., et al. (2017). Non-base-contacting residues enable kaleidoscopic evolution of metazoan C2H2 zinc finger DNA binding. Genome Biology, 18, 1–15. https://doi.org/10.1186/s13059-017-1287-y
Nocedal, I., Mancera, E., & Johnson, A. D. (2017). Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator. eLife, 6, 1–20. https://doi.org/10.7554/elife.23250
Noyes, M. B., Christensen, R. G., Wakabayashi, A., et al. (2008). Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell, 133, 1277–1289. https://doi.org/10.1016/j.cell.2008.05.023
Odom, D. T., Dowell, R. D., Jacobsen, E. S., et al. (2007). Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genetics, 39, 730–732. https://doi.org/10.1038/ng2047
Pabo, C. O., Peisach, E., & Grant, R. A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry, 70, 313–340. https://doi.org/10.1146/annurev.biochem.70.1.313
Pauli, A., Rinn, J. L., & Schier, A. F. (2011). Non-coding RNAs as regulators of embryogenesis. Nature Reviews. Genetics, 12, 136–149. https://doi.org/10.1038/nrg2904
Payne, J. L., Khalid, F., & Wagner, A. (2018). RNA-mediated gene regulation is less evolvable than transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 115, E3481–E3490. https://doi.org/10.1073/pnas.1719138115
Payne, J. L., & Wagner, A. (2014). The robustness and evolvability of transcription factor binding sites. Science, 343, 875–877. https://doi.org/10.1126/science.1249046
Payne, J. L., & Wagner, A. (2015). Mechanisms of mutational robustness in transcriptional regulation. Frontiers in Genetics, 6, 322. https://doi.org/10.3389/fgene.2015.00322
Payne, J. L., & Wagner, A. (2019). The causes of evolvability and their evolution. Nature Reviews. Genetics, 20, 24–38. https://doi.org/10.1038/s41576-018-0069-z
Pelechano, V., & Steinmetz, L. M. (2013). Gene regulation by antisense transcription. Nature Reviews. Genetics, 14, 880–893. https://doi.org/10.1038/nrg3594
Perez, J. C., Fordyce, P. M., Lohse, M. B., et al. (2014). How duplicated transcription regulators can diversify to govern the expression of nonoverlapping sets of genes. Genes & Development, 28, 1272–1277. https://doi.org/10.1101/gad.242271.114
Pfeiffer, B. D., Berman, B. P., Levine, M., et al. (2002). Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proceedings of the National Academy of Sciences, 99, 757–762. https://doi.org/10.1073/pnas.231608898
Pomerantz, M. M., Ahmadiyeh, N., Jia, L., et al. (2009). The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genetics, 41, 882–884. https://doi.org/10.1038/ng.403
Prud’homme, B., Gompel, N., & Carroll, S. B. (2007). Emerging principles of regulatory evolution. Proceedings of the National Academy of Sciences, 104, 8605–8612. https://doi.org/10.1073/pnas.0700488104
Ptashne, M., & Gann, A. (2002). Genes & signals. Cold Spring Harbor Laboratory Press.
Ramani, A. K., Chuluunbaatar, T., Verster, A. J., et al. (2012). The majority of animal genes are required for wild-type fitness. Cell, 148, 792–802. https://doi.org/10.1016/j.cell.2012.01.019
Raspopovic, J., Marcon, L., Russo, L., & Sharpe, J. (2014). Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science, 345, 566–570. https://doi.org/10.1126/science.1252960
Rest, J. S., Morales, C. M., Waldron, J. B., et al. (2013). Nonlinear fitness consequences of variation in expression level of a eukaryotic gene. Molecular Biology and Evolution, 30, 448–456. https://doi.org/10.1093/molbev/mss248
Ronshaugen, M., McGinnis, N., & McGinnis, W. (2002). Hox protein mutation and macroevolution of the insect body plan. Nature, 415, 914–917. https://doi.org/10.1038/nature716
Rowe, W., Platt, M., Wedge, D. C., et al. (2010). Analysis of a complete DNA-protein affinity landscape. Journal of the Royal Society Interface, 7, 397–408. https://doi.org/10.1098/rsif.2009.0193
Ruiz-Trillo, I., de Mendoza, A., Torruella, G., et al. (2013). Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proceedings of the National Academy of Sciences, 110, E4858–E4866. https://doi.org/10.1073/pnas.1311818110
Schaerli, Y., Jiménez, A., Duarte, J. M., et al. (2018). Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Molecular Systems Biology, 14, e8102. https://doi.org/10.15252/msb.20178102
Schmitz, J. F., Zimmer, F., & Bornberg-Bauer, E. (2016). Mechanisms of transcription factor evolution in Metazoa. Nucleic Acids Research, 44, 6287–6297. https://doi.org/10.1093/nar/gkw492
Sengupta, A. M., Djordjevic, M., & Shraiman, B. I. (2002). Specificity and robustness in transcription control networks. Proceedings of the National Academy of Sciences, 99, 2072–2077. https://doi.org/10.1073/pnas.022388499
Sharon, E., Chen, S. A., Khosla, N. M., et al. (2018). Functional genetic variants revealed by massively parallel precise genome editing. Cell, 175, 544–557.e16. https://doi.org/10.1016/j.cell.2018.08.057
Sharon, E., Kalma, Y., Sharp, A., et al. (2012). Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 30, 521–530. https://doi.org/10.1038/nbt.2205
Short, P. J., McRae, J. F., Gallone, G., et al. (2018). De novo mutations in regulatory elements in neurodevelopmental disorders. Nature, 555, 611–616. https://doi.org/10.1038/nature25983
Shultzaberger, R. K., Malashock, D. S., Kirsch, J. F., & Eisen, M. B. (2010). The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts. PLoS Genetics, 6, e1001042. https://doi.org/10.1371/journal.pgen.1001042
Smith, Z. D., & Meissner, A. (2013). DNA methylation: Roles in mammalian development. Nature Reviews. Genetics, 14, 204–220. https://doi.org/10.1038/nrg3354
Somma, M. P., Pisano, C., & Lavia, P. (1991). The housekeeping promoter from the mouse CpG island HTF9 contains multiple protein-binding elements that are functionally redundant. Nucleic Acids Research, 19, 2817–2824. https://doi.org/10.1093/nar/19.11.2817
Sorrells, T. R., Johnson, A. N., Howard, C. J., et al. (2018). Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife, 7, 1–29. https://doi.org/10.7554/eLife.37563
Spivakov, M., Akhtar, J., Kheradpour, P., et al. (2012). Analysis of variation at transcription factor binding sites in Drosophila and humans. Genome Biology, 13, R49. https://doi.org/10.1186/gb-2012-13-9-r49
Staller, M. V., Holehouse, A. S., Swain-Lenz, D., et al. (2018). A high-throughput mutational scan of an intrinsically disordered acidic transcriptional activation domain. Cell Systems, 6, 444–455. https://doi.org/10.1016/j.cels.2018.01.015
Starr, T. N., Picton, L. K., & Thornton, J. W. (2017). Alternative evolutionary histories in the sequence space of an ancient protein. Nature, 549, 409–413. https://doi.org/10.1038/nature23902
Starr, T. N., & Thornton, J. W. (2016). Epistasis in protein evolution. Protein Science, 25, 1204–1218. https://doi.org/10.1002/pro.2897
Stauber, M., Jäckle, H., & Schmidt-Ott, U. (1999). The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 3786–3789. https://doi.org/10.1073/pnas.96.7.3786
Stern, D. L. (2000). Evolutionary developmental biology and the problem of variation. Evolution, 54, 1079–1091. https://doi.org/10.1111/j.0014-3820.2000.tb00544.x
Stern, D. L., & Orgogozo, V. (2008). The loci of evolution: How predictable is genetic evolution? Evolution (N Y), 62, 2155–2177. https://doi.org/10.1111/j.1558-5646.2008.00450.x
Stewart, A. J., Hannenhalli, S., & Plotkin, J. B. (2012). Why transcription factor binding sites are ten nucleotides long. Genetics, 192, 973–985. https://doi.org/10.1534/genetics.112.143370
Stormo, G. D. (2013). Introduction to protein-DNA interactions: Structure, thermodynamics, and bioinformatics. Cold Spring Harbor Laboratory Press.
Stormo, G. D., & Zhao, Y. (2010). Determining the specificity of protein-DNA interactions. Nature Reviews. Genetics, 11, 751–760. https://doi.org/10.1038/nrg2845
Taipale, M., Jarosz, D. F., & Lindquist, S. (2010). HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nature Reviews. Molecular Cell Biology, 11, 515–528. https://doi.org/10.1038/nrm2918
Teichmann, S. A., & Babu, M. M. (2004). Gene regulatory network growth by duplication. Nature Genetics, 36, 492–496. https://doi.org/10.1038/ng1340
Thanos, D., & Maniatis, T. (1995). Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell, 83, 1091–1100. https://doi.org/10.1016/0092-8674(95)90136-1
Tian, B., & Manley, J. L. (2016). Alternative polyadenylation of mRNA precursors. Nature Reviews. Molecular Cell Biology, 18, 18–30. https://doi.org/10.1038/nrm.2016.116
Tischler, J., Lehner, B., Chen, N., & Fraser, A. G. (2006). Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biology, 7, 1–13. https://doi.org/10.1186/gb-2006-7-8-r69
Toll-Riera, M., & Albà, M. M. (2013). Emergence of novel domains in proteins. BMC Evolutionary Biology, 13, 47. https://doi.org/10.1186/1471-2148-13-47
Tsong, A. E., Tuch, B. B., Li, H., & Johnson, A. D. (2006). Evolution of alternative transcriptional circuits with identical logic. Nature, 443, 415–420. https://doi.org/10.1038/nature05099
Vaquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A., & Luscombe, N. M. (2009). A census of human transcription factors: Function, expression and evolution. Nature Reviews. Genetics, 10, 252–263. https://doi.org/10.1038/nrg2538
Veraksa, A., Del Campo, M., & McGinnis, W. (2000). Developmental patterning genes and their conserved functions: From model organisms to humans. Molecular Genetics and Metabolism, 69, 85–100. https://doi.org/10.1006/mgme.2000.2963
Wagner, A. (1996). Does evolutionary plasticity evolve? Evolution (N Y), 50, 1008. https://doi.org/10.2307/2410642
Wagner, A. (2005). Robustness and evolvability in living systems. Princeton University Press.
Wagner, A. (2008). Robustness and evolvability: A paradox resolved. Proceedings of the Royal Society B, 275, 91–100. https://doi.org/10.1098/rspb.2007.1137
Wagner, A. (2011). The origins of evolutionary innovations: A theory of transformative change in living systems. Oxford University Press.
Wasserman, W. W., & Fickett, J. W. (1998). Identification of regulatory regions which confer muscle-specific gene expression. Journal of Molecular Biology, 278, 167–181. https://doi.org/10.1006/jmbi.1998.1700
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442. https://doi.org/10.1038/30918
Weinhold, N., Jacobsen, A., Schultz, N., et al. (2014). Genome-wide analysis of noncoding regulatory mutations in cancer. Nature Genetics, 46, 1160–1165. https://doi.org/10.1038/ng.3101
Weirauch, M. T., & Hughes, T. R. (2010). Conserved expression without conserved regulatory sequence: The more things change, the more they stay the same. Trends in Genetics, 26, 66–74. https://doi.org/10.1016/j.tig.2009.12.002
Weirauch, M. T., & Hughes, T. R. (2011). A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. In T. R. Hughes (Ed.), A Handbook of transcription factors (pp. 25–73). Springer.
Weirauch, M. T., Yang, A., Albu, M., et al. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell, 158, 1431–1443. https://doi.org/10.1016/j.cell.2014.08.009
Weiss, K. M., & Fullerton, S. M. (2000). Minireview: Phenogenetic drift and the evolution of the genotype–phenotype relationships. Theoretical Population Biology, 57, 187–195.
Wong, K. C., Chan, T. M., Peng, C., et al. (2013). DNA motif elucidation using belief propagation. Nucleic Acids Research, 41, 1–12. https://doi.org/10.1093/nar/gkt574
Wotton, K. R., Jiménez-Guri, E., Crombach, A., et al. (2015). Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLife, 4, 1–28. https://doi.org/10.7554/eLife.04785
Wray, G. A. (2007). The evolutionary significance of cis-regulatory mutations. Nature Reviews. Genetics, 8, 206–216. https://doi.org/10.1038/nrg2063
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D. F. Jones (Ed.), Proceedings of the Sixth International Congress on Genetics (pp. 356–366). The Genetics Society of America.
Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology & Evolution, 18, 292–298. https://doi.org/10.1016/S0169-5347(03)00033-8
Zhao, B. S., Roundtree, I. A., & He, C. (2016). Post-transcriptional gene regulation by mRNA modifications. Nature Reviews. Molecular Cell Biology, 18, 31–42. https://doi.org/10.1038/nrm.2016.132
Zheng, W., Gianoulis, T. A., Karczewski, K. J., et al. (2011). Regulatory variation within and between species. Annual Review of Genomics and Human Genetics, 12, 327–346. https://doi.org/10.1146/annurev-genom-082908-150139
Zheng, W., Zhao, H., Mancera, E., et al. (2010). Genetic analysis of variation in transcription factor binding in yeast. Nature, 464, 1187–1191. https://doi.org/10.1038/nature08934
Acknowledgments
We apologize to our peers whose important works in this rapidly advancing field were not cited due to space constraints. J.A.-R. acknowledges support by Swiss National Science Foundation grant P2ZHP3_174735 and European Molecular Biology Organization grant ALTF 724-2018. J.L.P. acknowledges support by Swiss National Science Foundation grant PP00P3_170604.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Aguilar-Rodríguez, J., Payne, J.L. (2021). Robustness and Evolvability in Transcriptional Regulation. In: Crombach, A. (eds) Evolutionary Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-71737-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-71737-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71736-0
Online ISBN: 978-3-030-71737-7
eBook Packages: Computer ScienceComputer Science (R0)