Nothing Special   »   [go: up one dir, main page]

Skip to main content

Visualising Computational Intelligence through Converting Data into Formal Concepts

  • Chapter
Next Generation Data Technologies for Collective Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 352))

Abstract

Formal Concept Analysis (FCA) is an emerging data technology that complements collective intelligence such as that identified in the Semantic Web, by visualising the hidden meaning in disparate and distributed data. The chapter demonstrates the discovery of these novel semantics through a set of FCA open source software tools, FcaBedrock and In − Close, that were developed by the authors. These tools add computational intelligence by converting data into a Boolean form called a Formal Context, prepare this data for analysis by creating focused and manageable sub-contexts and then analyse the prepared data using a visualisation called a Concept Lattice. The Formal Concepts thus visualised highlight how data itself contains meaning, and how FCA tools thereby extract data’s inherent semantics. The chapter describes how this will be further developed in a project called “Combining and Uniting Business Intelligence with Semantic Technologies” (CUBIST), to provide in-data-warehouse visual analytics for Resource Description Framework (RDF)-based triple stores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, S.: In-Close, A Fast Algorithm for Computing Formal Concepts (2009), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-483/paper1.pdf

  2. Andrews, S.: Data conversion and interoperability for FCA. In: Conceptual Structures Tools Interoperability Workshop, 17th International Conference on Conceptual Structures (ICCS 2009), Moscow (2009), http://www.kde.cs.uni-kassel.de/ws/cs-tiw2009/proceedings_final_15July.pdf

  3. Andrews, S.: In-Close (2010), http://sourceforge.net/projects/inclose

  4. Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 181–184. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator (2010), http://sourceforge.net/projects/fcabedrock

  6. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  7. Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Becker, P., Correia, J.H.: ToscanaJ (2005), http://sourceforge.net/projects/toscanaj

  9. Berners-Lee, T.: Why RDF model is different from the XML model (1998), http://www.w3.org/DesignIssues/RDF-XML

  10. Frequent Itemset Mining Implementations Repository, http://fimi.cs.helsinki.fi

  11. The Friend of a Friend (FOAF) project, http://www.foaf-project.org/

  12. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1998); Translated by C. Franzke

    Google Scholar 

  13. Goethals, B., Zaki, M.: Advances in Frequent Itemset Mining Implementations: Report on FIMI 2003. SIGKDD Explorations Newsletter 6(1), 109–117 (2004)

    Article  Google Scholar 

  14. Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: Proceedings of the 1st International Workshop on Practical and Scalable Semantic Web Systems (PSSS) 2003, pp. 1–15 (2003), http://km.aifb.kit.edu/ws/psss03/proceedings/harris-et-al.pdf

  15. Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From SHIQ and RDF to OWL: the making of a Web Ontology Language. Web Semantics: Science, Services and Agents on the World Wide Web 1(1), 7–26 (2003), doi:dx.doi.org/10.1016/j.websem.2003.07.001

    Google Scholar 

  16. Imberman, S., Domanski, B.: Finding Association Rules from Quantitative Data using Data Booleanization (1999), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.4447&rep=rep1&type=pdf

  17. Jin, R., Breitbart, Y., Muoh, C.: Data discretization unification. Knowledge and Information Systems 19(1), 1–29 (2009)

    Article  Google Scholar 

  18. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceeding of the Sixth International Conference on Concept Lattices and their Applications, pp. 71–82. Palacky University, Olomouc (2008)

    Google Scholar 

  19. Kaytoue-Uberall, M., Duplesssis, S., Napoli, A.: Using Formal concept Analysis for the Extraction of Groups of Co-expressed Genes. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 439–449. Springer, Heidelberg (2008)

    Google Scholar 

  20. Passin, T.B.: Explorer’s Guide to the Semantic Web. Manning, Greenwich (2004)

    Google Scholar 

  21. Priss, U.: Formal Concept Analysis in Information Science. In: Cronin, B. (ed.) Annual Review of Information Science and Technology. ASIST, vol. 40 (2008)

    Google Scholar 

  22. Priss, U.: FcaStone - FCA File Format and Interoperability Software. In: Croitoru, M., Jaschkë, R., Rudolph, S. (eds.) Conceptual Structures and the Web, Proceedings of the Third Conceptual Structures and Tool Interoperability Workshop, pp. 33–43 (2008)

    Google Scholar 

  23. Priss, U.: FCA Software Interoperability. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceeding of the Sixth International Conference on Concept Lattices and Their Applications, pp. 133–144 (2008)

    Google Scholar 

  24. Semantic Web. The Semantic Web (2010), http://semanticweb.org/wiki/Main_Page

  25. Slezak, D., Wroblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data warehouse for ad-hoc queries. In: Proceedings of the VLDB Endowment, vol. 1(2), pp. 1337–1345. ACM Digital Library (2008)

    Google Scholar 

  26. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/

  27. Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual Clustering with Iceberg Concept Lattices. In: Proceedings of GI-Fachgruppentreffen Maschinelles Lernen 2001, Universitat Dortmund (2001)

    Google Scholar 

  28. World Wide Web Consortium. Design Issues (2010), http://www.w3.org/DesignIssues/

  29. White, P.W., French, C.D.: Database system with methodology for storing a database table by vertically partitioning all columns of the table. US Patent 5,794,229, August 11 (1998)

    Google Scholar 

  30. Wille, R.: Formal Concept Analysis as Mathematical Theory of concepts. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis: Foundations and Applications, pp. 1–6. Springer, Berlin (2005)

    Chapter  Google Scholar 

  31. Wolff, K.E.: A First Course in Formal Concept Analysis (1993), http://www.fbmn.h-da.de/home/wolff/Publikationen/A_First_Course_in_Formal_Concept_Analysis.pdf

  32. Yevtushenko, S.: ConExp. (2006), http://sourceforge.net/projects/conexp

  33. Zaki, M.J., Hsiao, C.-J.: Efficient Algorithms for Mining Closed Itemsets and Their Lattice Structure. IEEE Transactions on Knowledge and Data Mining 17(4) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrews, S., Orphanides, C., Polovina, S. (2011). Visualising Computational Intelligence through Converting Data into Formal Concepts. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20344-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20343-5

  • Online ISBN: 978-3-642-20344-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics