Abstract
Formal Concept Analysis (FCA) is an emerging data technology that complements collective intelligence such as that identified in the Semantic Web, by visualising the hidden meaning in disparate and distributed data. The chapter demonstrates the discovery of these novel semantics through a set of FCA open source software tools, FcaBedrock and In − Close, that were developed by the authors. These tools add computational intelligence by converting data into a Boolean form called a Formal Context, prepare this data for analysis by creating focused and manageable sub-contexts and then analyse the prepared data using a visualisation called a Concept Lattice. The Formal Concepts thus visualised highlight how data itself contains meaning, and how FCA tools thereby extract data’s inherent semantics. The chapter describes how this will be further developed in a project called “Combining and Uniting Business Intelligence with Semantic Technologies” (CUBIST), to provide in-data-warehouse visual analytics for Resource Description Framework (RDF)-based triple stores.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrews, S.: In-Close, A Fast Algorithm for Computing Formal Concepts (2009), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-483/paper1.pdf
Andrews, S.: Data conversion and interoperability for FCA. In: Conceptual Structures Tools Interoperability Workshop, 17th International Conference on Conceptual Structures (ICCS 2009), Moscow (2009), http://www.kde.cs.uni-kassel.de/ws/cs-tiw2009/proceedings_final_15July.pdf
Andrews, S.: In-Close (2010), http://sourceforge.net/projects/inclose
Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 181–184. Springer, Heidelberg (2010)
Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator (2010), http://sourceforge.net/projects/fcabedrock
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)
Becker, P., Correia, J.H.: ToscanaJ (2005), http://sourceforge.net/projects/toscanaj
Berners-Lee, T.: Why RDF model is different from the XML model (1998), http://www.w3.org/DesignIssues/RDF-XML
Frequent Itemset Mining Implementations Repository, http://fimi.cs.helsinki.fi
The Friend of a Friend (FOAF) project, http://www.foaf-project.org/
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1998); Translated by C. Franzke
Goethals, B., Zaki, M.: Advances in Frequent Itemset Mining Implementations: Report on FIMI 2003. SIGKDD Explorations Newsletter 6(1), 109–117 (2004)
Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: Proceedings of the 1st International Workshop on Practical and Scalable Semantic Web Systems (PSSS) 2003, pp. 1–15 (2003), http://km.aifb.kit.edu/ws/psss03/proceedings/harris-et-al.pdf
Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From SHIQ and RDF to OWL: the making of a Web Ontology Language. Web Semantics: Science, Services and Agents on the World Wide Web 1(1), 7–26 (2003), doi:dx.doi.org/10.1016/j.websem.2003.07.001
Imberman, S., Domanski, B.: Finding Association Rules from Quantitative Data using Data Booleanization (1999), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.4447&rep=rep1&type=pdf
Jin, R., Breitbart, Y., Muoh, C.: Data discretization unification. Knowledge and Information Systems 19(1), 1–29 (2009)
Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceeding of the Sixth International Conference on Concept Lattices and their Applications, pp. 71–82. Palacky University, Olomouc (2008)
Kaytoue-Uberall, M., Duplesssis, S., Napoli, A.: Using Formal concept Analysis for the Extraction of Groups of Co-expressed Genes. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 439–449. Springer, Heidelberg (2008)
Passin, T.B.: Explorer’s Guide to the Semantic Web. Manning, Greenwich (2004)
Priss, U.: Formal Concept Analysis in Information Science. In: Cronin, B. (ed.) Annual Review of Information Science and Technology. ASIST, vol. 40 (2008)
Priss, U.: FcaStone - FCA File Format and Interoperability Software. In: Croitoru, M., Jaschkë, R., Rudolph, S. (eds.) Conceptual Structures and the Web, Proceedings of the Third Conceptual Structures and Tool Interoperability Workshop, pp. 33–43 (2008)
Priss, U.: FCA Software Interoperability. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proceeding of the Sixth International Conference on Concept Lattices and Their Applications, pp. 133–144 (2008)
Semantic Web. The Semantic Web (2010), http://semanticweb.org/wiki/Main_Page
Slezak, D., Wroblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data warehouse for ad-hoc queries. In: Proceedings of the VLDB Endowment, vol. 1(2), pp. 1337–1345. ACM Digital Library (2008)
SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/
Stumme, G., Taouil, R., Bastide, Y., Lakhal, L.: Conceptual Clustering with Iceberg Concept Lattices. In: Proceedings of GI-Fachgruppentreffen Maschinelles Lernen 2001, Universitat Dortmund (2001)
World Wide Web Consortium. Design Issues (2010), http://www.w3.org/DesignIssues/
White, P.W., French, C.D.: Database system with methodology for storing a database table by vertically partitioning all columns of the table. US Patent 5,794,229, August 11 (1998)
Wille, R.: Formal Concept Analysis as Mathematical Theory of concepts. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis: Foundations and Applications, pp. 1–6. Springer, Berlin (2005)
Wolff, K.E.: A First Course in Formal Concept Analysis (1993), http://www.fbmn.h-da.de/home/wolff/Publikationen/A_First_Course_in_Formal_Concept_Analysis.pdf
Yevtushenko, S.: ConExp. (2006), http://sourceforge.net/projects/conexp
Zaki, M.J., Hsiao, C.-J.: Efficient Algorithms for Mining Closed Itemsets and Their Lattice Structure. IEEE Transactions on Knowledge and Data Mining 17(4) (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Andrews, S., Orphanides, C., Polovina, S. (2011). Visualising Computational Intelligence through Converting Data into Formal Concepts. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-20344-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20343-5
Online ISBN: 978-3-642-20344-2
eBook Packages: EngineeringEngineering (R0)