Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies

  • Chapter
Formal Concept Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3626))

Abstract

Formal Concept Analysis has been originally developed as a subfield of Applied Mathematics based on the mathematization of concept and concept hierarchy. Only after more than a decade of development, the connections to the philosophical logic of human thought became clearer and even later the connections to Piaget’s cognitive structuralism which Thomas Bernhard Seiler convincingly elaborated to a comprehensive theory of concepts in his recent book [Se01]. It is the main concern of this paper to show the surprisingly rich correspondences between Seiler’s multifarious aspects of concepts in the human mind and the structural properties and relationships of formal concepts in Formal Concept Analysis. These correspondences make understandable, what has been experienced in a great multitude of applications, that Formal Concept Analysis may function in the sense of transdisciplinary mathematics, i.e., it allows mathematical thought to aggregate with other ways of thinking and thereby to support human thought and action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batel, G.: Komponenten musikalischen Erlebens. Göttinger Musikwissenschaftliche Schriften (1976)

    Google Scholar 

  2. Becker, K., Stumme, G., Wille, R., Wille, U., Zickwolff, M.: Conceptual information systems discussed through an IT-security tool. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 352–365. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Burmeister, P.: ConImp – Ein Programm zur Formalen Begriffsanalyse. In: [SW00], pp. 25–56

    Google Scholar 

  4. Claar, A.: Die Entwicklung ökonomischer Begriffe im Jugendalter. In: Lehr- und Forschungstexte Psychologie, vol. 37, Springer, Heidelberg (1990)

    Google Scholar 

  5. DK Eyewitness Travel Guide New Zealand. Dorling Kindersley Publishing Inc. (2001)

    Google Scholar 

  6. Eschenfelder, D., Kollewe, W., Skorsky, M., Wille, R.: Ein Erkundungssystem zum Baurecht: Methoden der Entwicklung eines TOSCANA-Systems. In: [SW00], pp. 254–272

    Google Scholar 

  7. Freese, R.: Automated lattice drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Ganter, B.: Algorithmen zur Formalen Begriffsanalyse. In: Ganter, B., Wille, R., Wolff, K.E. (Hrsg.) (eds.) Beiträge zur Begriffsanalyse, pp. 241–254. B.I.-Wissenschaftsverlag, Mannheim (1986)

    Google Scholar 

  9. Ganter, B.: Begriffe und Implikationen. In: [SW00], pp. 1–24

    Google Scholar 

  10. Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of combinatorics and graph theory in the biological and social sciences, pp. 139–167. Springer, New York (1989)

    Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 377–388. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Großkopf, A., Harras, G.: Begriffliche Erkundung semantischer Strukturen von Sprechaktverben. In: [SW00], pp. 273–295

    Google Scholar 

  14. Kaiser, T.: A TOSCANA-System for the International Regimes Database (IRD). In: Breitmeier, H., Young, O.R., Zürn, M. (eds.) Analyzing international environmental regimes: from case study to database (to appear)

    Google Scholar 

  15. Kant, I.: Logic. Dover, New York (1988)

    Google Scholar 

  16. Kaufmann, U.: Begriffliche Analyse von Daten über Flugereignisse – Implementierung eines Erkundungs- und Analysesystems mit TOSCANA. Diplomarbeit, FB4, TU Darmstadt (1996)

    Google Scholar 

  17. Kipke, U., Wille, R.: Formale Begriffsanalyse erläutert an einem Wortfeld. LDV-Forum 5, 31–36 (1987)

    Google Scholar 

  18. Kohler-Koch, B., Vogt, F.: Normen- und regelgeleitete internationale Kooperationen. In: [SW00], pp. 325–340

    Google Scholar 

  19. Kollewe, W., Skorsky, M., Vogt, F., Wille, R.: TOSCANA – ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten. In: Wille, R., Zickwolff, M. (Hrsg.) (eds.) Begriffliche Wissensverarbeitung – Grundfragen und Aufgaben, pp. 267–288. B.I.- Wissenschaftsverlag, Mannheim (1994)

    Google Scholar 

  20. Mackensen, K.: Simplizität – Genese und Wandel einer musikästhetischen Kategorie des 18. Jahrhunderts. Bärenreiter, Kassel (2000)

    Google Scholar 

  21. Mackensen, K., Wille, U.: Qualitative text analysis supported by conceptual data systems. Quality & Quantity 33, 135–156 (1999)

    Article  Google Scholar 

  22. Old, J.: The semantic structure of Roget’s, a whole-language thesaurus. PhD Dissertation. Indiana University, Bloomington (2003)

    Google Scholar 

  23. Old, J.: Unlocking the semantics of Roget’s thesaurus using Formal Concept Analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 244–251. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Peirce, C.S.: Reasoning and the logic of things. In: Ketner, K.L. (ed.) with an introduction by K. L. Ketner and H. Putnam, Havard University Press, Cambridge (1992)

    Google Scholar 

  25. Pogel, A., Hanan, T., Miller, L.: Visualization of concept lattices using weight functions. In: Pfeiffer, H.D., Wolff, K.E., Delugach, H.S. (eds.) Conceptual structures at work, pp. 1–14. Shaker Verlag, Aachen (2004)

    Google Scholar 

  26. Prediger, S.: Mathematische Logik in der Wissensverarbeitung: Historischphilosophische Gründe für eine Kontextuelle Logik. Mathematische Semesterberichte 47, 165–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Priss, U.: Relational Concept Analysis: Semantic structures in dictionaries and lexical databases, Dissertation, TU Darmstadt. Shaker Verlag, Aachen (1996)

    Google Scholar 

  28. Priss, U., Old, J.: Modelling lexical databases with Formal Concept Analysis. Journal of Universal Computer Science 10, 967–984 (2004)

    Google Scholar 

  29. Rock, T., Wille, R.: Ein TOSCANA-Erkundungssystem zur Literatursuche. In: [SW00], pp. 239–253

    Google Scholar 

  30. Scheich, P., Skorsky, M., Vogt, F., Wachter, C., Wille, R.: Conceptual data systems. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and classification, pp. 72–84. Springer, Heidelberg (1993)

    Google Scholar 

  31. Schmidt, S.: Ein TOSCANA-System über die Besteuerung von Einkünften aus Kapitalvermögen (Anlage KAP zur EST 2003). Diplomarbeit, FB4, TU Darmstadt (2004)

    Google Scholar 

  32. Sedelow, S., Sedelow, W.: The Concept concept. In: Proc. Fifth Int. Conf. on Computing and Information, Sudbury, Ontario, pp. 339–343 (1993)

    Google Scholar 

  33. Seiler, T.B.: Begreifen und Verstehen. Ein Buch über Begriffe und Bedeutungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)

    Google Scholar 

  34. Spangenberg, N.: Familienkonflikte eßgestörter Patientinnen. Eine empirische Untersuchung mit der Repertory Grid Technik. Habilitationsschrift, Universität Gießen (1990)

    Google Scholar 

  35. Spangenberg, N., Wolff, K.E.: Conceptual grid evaluation. In: Bock, H.H. (ed.) Classification and related methods of data analysis, pp. 577–580. Elsevier, Amsterdam (1988)

    Google Scholar 

  36. Spangenberg, N., Wolff, K.E.: Datenreduktion durch die Formale Begriffsanalyse von Repertory Grids. In: Scheer, J.W., Catina, A. (eds.) Einführung in die Repertory Grid-Technik. Bd. 2: Klinische Forschung und Praxis, Huber, Bern, pp. 38–54 (1993)

    Google Scholar 

  37. Strahringer, S., Wille, R., Wille, U.: Mathematical support for empirical theory building. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 169–186. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  38. Stumme, G.: Concept exploration: knowledge acquisition in conceptual knowledge systems, Dissertation, TU Darmstadt. Shaker Verlag, Aachen (1997)

    MATH  Google Scholar 

  39. Stumme, G., Wille, R. (Hrsg.): Begriffliche Wissensverarbeitung: Methoden und Anwendungen. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  40. Vogel, N.: Ein begriffliches Erkundungssystem für Rohrleitungen. Diplomarbeit, FB4, TU Darmstadt (1995)

    Google Scholar 

  41. Vogt, F.: Formale Begriffsanalys mit C++: Datenstrukturen und Algorithmen. Springer, Heidelberg (1996)

    Google Scholar 

  42. Vogt, F., Wille, R.: TOSCANA – A graphical tool for analyzing and exploring data. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 226–233. Springer, Heidelberg (1995)

    Google Scholar 

  43. Vormbrock, B., Wille, R.: Semiconcept and protoconcept algebras: the basic theorems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 34–48. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  44. Wagner, H.: Begriff. In: Krings, H., Baumgartner, H.M., Wild, C. (eds.) Handbuch philosophischer Grundbegriffe, Kösel, München, pp. 191–209 (1973)

    Google Scholar 

  45. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)

    Google Scholar 

  46. Wille, R.: Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille, R., Wolff, K.E. (Hrsg.) (eds.) Beiträge zur Begriffsanalyse, pp. 161–211. B.I.-Wissenschaftsverlag, Mannheim (1986)

    Google Scholar 

  47. Wille, R.: Lattices in data analysis: how to draw them with a computer. In: Rival, I. (ed.) Algorithms and order, pp. 33–58. Kluwer, Dordrecht (1989)

    Google Scholar 

  48. Wille, R.: Knowledge acquisition by methods of Formal Concept Analysis. In: Diday, E. (ed.) Data analysis and learning symbolic and numeric knowledge, pp. 365–380. Nova Science Publisher, New York (1989)

    Google Scholar 

  49. Wille, R.: Begriffsdenken: Von der griechischen Philosophie bis zur künstlichen Intelligenz heute. Dilthey-Kastanie, Ludwig-Georgs-Gymnasium, Darmstadt, pp. 77–109 (1995)

    Google Scholar 

  50. Wille, R.: Contextual Logic summary. In: Stumme, G. (ed.) Working with conceptual structures: Contributions to ICCS 2000, pp. 265–276. Shaker-Verlag, Aachen (2000)

    Google Scholar 

  51. Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  52. Wille, R.: Why can concept lattices support knowledge discovery in databases? In: Mephu Nguifo, E., et al. (eds.) ICCS 2001 Workshop on Concept Lattice-Based Theory, Methods and Tools for Knowledge Discovery in Databases, pp. 7–20. Stanford University (2001); Journal of Experimental and Theoretical Artificial Intelligence 14, 81–92 (2002)

    Google Scholar 

  53. Wille, R.: Transdisziplinarität und Allgemeine Wissenschaft. In: Krebs, H., Gehrlein, U., Pfeifer, J., Schmidt, J.C. (Hrsg.) (eds.) Perspektiven Interdisziplinärer Technikforschung: Konzepte, Analysen, Erfahrungen, pp. 73–84. Agenda-Verlag, Münster (2002)

    Google Scholar 

  54. Wille, R.: Kommunikative Rationalität und Mathematik. In: Prediger, S., Siebel, F., Lengnink, K. (Hrsg.) (eds.) Mathematik und Kommunikation, pp. 181–195. Verlag Allgemeine Wissenschaft, Mühltal (2002)

    Google Scholar 

  55. Wille, R.: Truncated distributive lattices: conceptual structures of simpleimplicational theories. Order 20, 229–238 (2004)

    Article  MathSciNet  Google Scholar 

  56. Wille, U.: Eine Axiomatisierung bilinearer Kontexte. Mitt. Math. Sem. Gießen 200, 71–112 (1991)

    MathSciNet  Google Scholar 

  57. Wille, U.: Characterization of ordered bilinear contexts. Journal of Geometry 64, 167–207 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wille, R. (2005). Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_1

Download citation

  • DOI: https://doi.org/10.1007/11528784_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27891-7

  • Online ISBN: 978-3-540-31881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics