Nothing Special   »   [go: up one dir, main page]

Skip to main content

Applying Machine Learning Diversity Metrics to Data Fusion in Information Retrieval

  • Conference paper
Advances in Information Retrieval (ECIR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6611))

Included in the following conference series:

Abstract

The Supervised Machine Learning task of classification has parallels with Information Retrieval (IR): in each case, items (documents in the case of IR) are required to be categorised into discrete classes (relevant or non-relevant). Thus a parallel can also be drawn between classifier ensembles, where evidence from multiple classifiers are combined to achieve a superior result, and the IR data fusion task.

This paper presents preliminary experimental results on the applicability of classifier ensemble diversity metrics in data fusion. Initial results indicate a relationship between the quality of the fused result set (as measured by MAP) and the diversity of its inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, J.H.: Analyses of multiple evidence combination. SIGIR Forum 31, 267–276 (1997)

    Article  Google Scholar 

  2. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Kuncheva, L., Whitaker, C.: Ten measures of diversity in classifier ensembles: limits for two classifiers. In: IEEE Workshop on Intelligent Sensor Processing, Birmingham, UK (2001)

    Google Scholar 

  4. Shipp, C., Kuncheva, L.: Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion 3(2), 135–148 (2002)

    Article  Google Scholar 

  5. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: Extending Probabilistic Data Fusion Using Sliding Windows. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 358–369. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leonard, D., Lillis, D., Zhang, L., Toolan, F., Collier, R.W., Dunnion, J. (2011). Applying Machine Learning Diversity Metrics to Data Fusion in Information Retrieval. In: Clough, P., et al. Advances in Information Retrieval. ECIR 2011. Lecture Notes in Computer Science, vol 6611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20161-5_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20161-5_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20160-8

  • Online ISBN: 978-3-642-20161-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics