Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extending Probabilistic Data Fusion Using Sliding Windows

  • Conference paper
Advances in Information Retrieval (ECIR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4956))

Included in the following conference series:

Abstract

Recent developments in the field of data fusion have seen a focus on techniques that use training queries to estimate the probability that various documents are relevant to a given query and use that information to assign scores to those documents on which they are subsequently ranked. This paper introduces SlideFuse, which builds on these techniques, introducing a sliding window in order to compensate for situations where little relevance information is available to aid in the estimation of probabilities.

SlideFuse is shown to perform favourably in comparison with CombMNZ, ProbFuse and SegFuse. CombMNZ is the standard baseline technique against which data fusion algorithms are compared whereas ProbFuse and SegFuse represent the state-of-the-art for probabilistic data fusion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple ranked retrieval systems. In: SIGIR 1994: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 173–181. Springer, New York (1994) Reference to show that it has long been demonstrated that fusion improves results

    Google Scholar 

  2. Beitzel, S.M., Jensen, E.C., Chowdhury, A., Grossman, D., Frieder, O., Goharian, N.: Fusion of effective retrieval strategies in the same information retrieval system. J. Am. Soc. Inf. Sci. Technol. 55(10), 859–868 (2004)

    Article  Google Scholar 

  3. Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. Information Retrieval 1(3), 151–173 (1999)

    Article  Google Scholar 

  4. Aslam, J.A., Montague, M.: Bayes optimal metasearch: a probabilistic model for combining the results of multiple retrieval systems. In: SIGIR 2000: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 379–381. ACM Press, New York (2000)

    Chapter  Google Scholar 

  5. Voorhees, E.M., Gupta, N.K., Johnson-Laird, B.: The collection fusion problem. In: Proceedings of the Third Text REtrieval Conference (TREC-3), pp. 95–104 (1994)

    Google Scholar 

  6. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: ProbFuse: a probabilistic approach to data fusion. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 139–146. ACM Press, New York (2006)

    Chapter  Google Scholar 

  7. Shokouhi, M.: Segmentation of search engine results for effective data-fusion. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, Springer, Heidelberg (2007)

    Google Scholar 

  8. Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Proceedings of the 2nd Text REtrieval Conference (TREC-2), National Institute of Standards and Technology Special Publication 500-215, pp. 243–252 (1994)

    Google Scholar 

  9. Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference networks. In: SIGIR 1995: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 21–28. ACM Press, New York (1995)

    Chapter  Google Scholar 

  10. Si, L., Callan, J.: Using sampled data and regression to merge search engine results. In: SIGIR 2002: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 19–26. ACM Press, New York (2002)

    Chapter  Google Scholar 

  11. Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: CIKM 2002: Proceedings of the eleventh international conference on Information and knowledge management, pp. 538–548. ACM Press, New York (2002)

    Chapter  Google Scholar 

  12. Lee, J.H.: Analyses of multiple evidence combination. SIGIR Forum 31(SI), 267–276 (1997)

    Article  Google Scholar 

  13. Voorhees, E.M., Gupta, N.K., Johnson-Laird, B.: Learning collection fusion strategies. In: SIGIR 1995: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 172–179. ACM Press, New York (1995)

    Chapter  Google Scholar 

  14. Aslam, J.A., Montague, M.: Models for metasearch. In: SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 276–284. ACM Press, New York (2001)

    Chapter  Google Scholar 

  15. Craswell, N., Hawking, D., Thistlewaite, P.B.: Merging results from isolated search engines. In: Australasian Database Conference, Auckland, New Zealand, pp. 189–200 (1999)

    Google Scholar 

  16. Lawrence, S., Giles, C.L.: Inquirus, the NECI meta search engine. In: Seventh International World Wide Web Conference, Brisbane, Australia, pp. 95–105. Elsevier, Amsterdam (1998)

    Google Scholar 

  17. Gravano, L., Chang, K., Garcia-Molina, H., Paepcke, A.: Starts: Stanford protocol proposal for internet retrieval and search. Technical report, Stanford, CA, USA (1997)

    Google Scholar 

  18. Lillis, D., Toolan, F., Collier, R., Dunnion, J.: Probabilistic data fusion on a large document collection. In: Proceedings of the 17th Irish Conference on Artificial Intelligence and Cognitive Science (AICS 2006), Belfast, Northern Ireland, Queen’s University Belfast (2006)

    Google Scholar 

  19. Craswell, N., Hawking, D.: Overview of the TREC-2004 web track. In: Proceedings of the Thirteenth Text REtrieval Conference (TREC-2004) (2004)

    Google Scholar 

  20. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 25–32. ACM Press, New York (2004)

    Google Scholar 

  21. Silverstein, C., Henzinger, M., Marais, H., Moricz, M.: Analysis of a Very Large AltaVista Query Log. Technical Report 1998-014, Digital SRC (1998), http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/abstracts/src-tn-1998-014.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Craig Macdonald Iadh Ounis Vassilis Plachouras Ian Ruthven Ryen W. White

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lillis, D., Toolan, F., Collier, R., Dunnion, J. (2008). Extending Probabilistic Data Fusion Using Sliding Windows. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds) Advances in Information Retrieval. ECIR 2008. Lecture Notes in Computer Science, vol 4956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78646-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78646-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78645-0

  • Online ISBN: 978-3-540-78646-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics