Nothing Special   »   [go: up one dir, main page]

Skip to main content

Call-by-Value Solvability, Revisited

  • Conference paper
Functional and Logic Programming (FLOPS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7294))

Included in the following conference series:

Abstract

In the call-by-value lambda-calculus solvable terms have been characterised by means of call-by-name reductions, which is disappointing and requires complex reasonings. We introduce the value-substitution lambda-calculus, a simple calculus borrowing ideas from Herbelin and Zimmerman’s call-by-value λ CBV calculus and from Accattoli and Kesner’s substitution calculus λ sub . In this new setting, we characterise solvable terms as those terms having normal form with respect to a suitable restriction of the rewriting relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Accattoli, B.: An abstract factorisation theorem for explicit substitutions (2011) (accepted at RTA 2012), https://sites.google.com/site/beniaminoaccattoli/factorisation.pdf

  2. Accattoli, B.: Jumping around the box. Ph.D. Thesis, Università di Roma La Sapienza (2011)

    Google Scholar 

  3. Accattoli, B., Guerrini, S.: Jumping Boxes. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 55–70. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Accattoli, B., Kesner, D.: The Permutative λ-Calculus. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 23–36. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Accattoli, B., Kesner, D.: The Structural λ-Calculus. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited (ext. version) (2012), https://sites.google.com/site/beniaminoaccattoli/CBV-solvabilitywithproofs.pdf

  7. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, vol. 103. North-Holland (1984)

    Google Scholar 

  8. Barendregt, H.: Solvability in lambda-calculi. The Journal of Symbolic Logic 39(2), 372 (1975)

    Google Scholar 

  9. Dyckhoff, R., Lengrand, S.: Call-by-value lambda-calculus and ljq. J. Log. Comput. 17(6), 1109–1134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández, M., Siafakas, N.: Labelled lambda-calculi with explicit copy and erase. In: LINEARITY, pp. 49–64 (2009)

    Google Scholar 

  11. Herbelin, H., Zimmermann, S.: An Operational Account of Call-by-Value Minimal and Classical λ-Calculus in “Natural Deduction” Form. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 142–156. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Hofmann, M.: Sound and complete axiomatisations of call-by-value control operators. Mathematical Structures in Computer Science 5, 461–482 (1995)

    Article  MATH  Google Scholar 

  13. Hyland, J.M.E.: A Survey of Some Useful Partial Order Relations on Terms of the Lambda Calculus. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 83–95. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  14. Klop, J.W.: On Solvability by λ I - Terms. In: Böhm, C. (ed.) λ-Calculus and Computer Science Theory. LNCS, vol. 37, pp. 342–345. Springer, Heidelberg (1975)

    Google Scholar 

  15. Landin, P.J.: A correspondence between ALGOL 60 and Church’s lambda-notation: Part I and Part II. Communications of the ACM 8(2-3), 89–101, 158–165 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Melliès, P.A.: A Factorisation Theorem in Rewriting Theory. In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 49–68. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE Computer Society Press, Piscataway (1989)

    Google Scholar 

  18. Pagani, M., Rocca, S.R.D.: Linearity, non-determinism and solvability. Fundam. Inform. 103(1-4), 173–202 (2010)

    MATH  Google Scholar 

  19. Paolini, L.: Call-by-Value Separability and Computability. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 74–89. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Paolini, L., Pimentel, E., Ronchi Della Rocca, S.: Lazy strong normalization. Electr. Notes Theor. Comput. Sci. 136, 103–116 (2005)

    Article  MathSciNet  Google Scholar 

  21. Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. Theoretical Informatics and Applications 33(6), 507–534 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1, 125–159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for Computation. Texts in Theoretical Computer Science: An EATCS. Springer, Berlin (2004)

    Google Scholar 

  24. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. LISP and Symbolic Computation 6, 289–360 (1993)

    Article  Google Scholar 

  25. Saurin, A.: Standardization and Böhm Trees for Λμ-Calculus. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 134–149. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Wadsworth, C.P.: The relation between computational and denotational properties for Scott’s D  ∞ -models of the lambda-calculus. SIAM Journal of Computing 5(3), 488–521 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Accattoli, B., Paolini, L. (2012). Call-by-Value Solvability, Revisited. In: Schrijvers, T., Thiemann, P. (eds) Functional and Logic Programming. FLOPS 2012. Lecture Notes in Computer Science, vol 7294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29822-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29822-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29821-9

  • Online ISBN: 978-3-642-29822-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics