Nothing Special   »   [go: up one dir, main page]

Skip to main content

Jumping Boxes

Representing Lambda-Calculus Boxes by Jumps

  • Conference paper
Computer Science Logic (CSL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5771))

Included in the following conference series:

Abstract

Boxes are a key tool introduced by linear logic proof nets to implement lambda-calculus beta-reduction. In usual graph reduction, on the other hand, there is no need for boxes: the part of a shared graph that may be copied or erased is reconstructed on the fly when needed. Boxes however play a key role in controlling the reductions of nets and in the correspondence between nets and terms with explicit substitutions.

We show that boxes can be represented in a simple and efficient way by adding a jump, i.e. an extra connection, for every explicit sharing position (exponential cut) in the graph, and we characterize our nets by a variant of Lamarche’s correctness criterion for essential nets. The correspondence between explicit substitutions and jumps simplifies the already known correspondence between explicit substitutions and proof net exponential cuts.

Partially supported by the MIUR PRIN grant “CONCERTO” and by the Sapienza S.M.F.N. grant “Applicazione di Strumenti Logici alla Progettazione e Analisi di Sistemi Software”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  2. Cosmo, R.D., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. Mathematical Structures in Computer Science 13(3), 409–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Di Giamberardino, P., Faggian, C.: Jump from parallel to sequential proofs: Multiplicatives. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 319–333. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Girard, J.-Y.: Quantifiers in linear logic II. In: Prépublications de l’Équipe de Logique 19. Université Paris VII, Paris (1991)

    Google Scholar 

  6. Guerrini, S., Martini, S., Masini, A.: Coherence for sharing proof nets. Theoretical Computer Science 294(3), 379–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kesner, D.: The theory of calculi with explicit substitutions revisited. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Lamarche, F.: Proof nets for intuitionistic linear logic I: Essential nets. Preliminary report (April 1994)

    Google Scholar 

  9. Mackie, I.: Linear logic with boxes. In: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 309–320 (1998)

    Google Scholar 

  10. Murawski, A.S., Ong, C.-H.L.: Dominator trees and fast verification of proof nets. In: LICS 2000: Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science, pp. 181–191. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  11. Peyton Jones, S.: The Implementation of Functional Programming Languages. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  12. Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation: Applications, Languages and Tools, ch. 1, vol. 2, pp. 3–61. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  13. Regnier, L.: Lambda-calcul et réseaux. Thèse de doctorat, Université Paris, 7 (1992)

    Google Scholar 

  14. Wadsworth, C.P.: Semantics and pragmatics of the lambda-calculus. Phd Thesis, Oxford, ch. 4 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Accattoli, B., Guerrini, S. (2009). Jumping Boxes . In: Grädel, E., Kahle, R. (eds) Computer Science Logic. CSL 2009. Lecture Notes in Computer Science, vol 5771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04027-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04027-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04026-9

  • Online ISBN: 978-3-642-04027-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics