Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

An Among constraint holds if the number of variables that belong to a given value domain is between given bounds. This paper focuses on the case where the variable and value domains are intervals. We investigate the conjunction of Among constraints of this type. We prove that checking for satisfiability – and thus, enforcing bound consistency – can be done in polynomial time. The proof is based on a specific decomposition that can be used as such to filter inconsistent bounds from the variable domains. We show that this decomposition is incomparable with the natural conjunction of Among constraints, and that both decompositions do not ensure bound consistency. Still, experiments on randomly generated instances reveal the benefits of this new decomposition in practice. This paper also introduces a generalization of this problem to several dimensions and shows that satisfiability is \(\mathcal{R}\)-complete in the multi-dimensional case

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beldiceanu, N., Contejean, E.: Introducing Global Constraints in CHIP. Journal of Mathematical and Computer Moddeling 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  2. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Among, Common and Disjoint Constraints. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 29–43. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The Range and Roots Constraints: Specifying Counting and Occurrence Problems. In: IJCAI, pp. 60–65 (2005)

    Google Scholar 

  4. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Chabert, G., Jaulin, L., Lorca, X.: A Constraint on the Number of Distinct Vectors with Application to Localization. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 196–210. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Cotton, S., Maler, O.: Fast and Flexible Difference Constraint Propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3), 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Katriel, I., Thiel, S.: Complete Bound Consistency for the Global Cardinality Constraint. Constraints 10(3), 191–217 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Saunders College Publishing (1976)

    Google Scholar 

  10. Maher, M.J., Narodytska, N., Quimper, C.-G., Walsh, T.: Flow-Based Propagators for the SEQUENCE and Related Global Constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 159–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In: 13th Conference on Artificial Intelligence, AAAI 1996, pp. 209–215 (1996)

    Google Scholar 

  12. Régin, J.-C.: Combination of Among and Cardinality Constraints. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Shostak, R.: Deciding linear inequalities by computing loop residues. Journal of the ACM 28(4), 769–779 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. CHOCO Team. choco: an open source java constraint programming library. Research report 10-02-INFO, Ecole des Mines de Nantes (2010)

    Google Scholar 

  15. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New filtering algorithms for combinations of among constraints. Constraints 14, 273–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chabert, G., Demassey, S. (2012). The Conjunction of Interval Among Constraints. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds) Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems. CPAIOR 2012. Lecture Notes in Computer Science, vol 7298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29828-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29828-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29827-1

  • Online ISBN: 978-3-642-29828-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics