Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast and Flexible Difference Constraint Propagation for DPLL(T)

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2006 (SAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

In the context of DPLL(T), theory propagation is the process of dynamically selecting consequences of a conjunction of constraints from a given set of candidate constraints. We present improvements to a fast theory propagation procedure for difference constraints of the form xyc. These improvements are demonstrated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 349–363. Springer, Heidelberg (1996)

    Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  3. Cotton, S.: Satisfiability checking with difference constraints. Master’s thesis, Max Planck Institute (2005)

    Google Scholar 

  4. Cotton, S., Maler, O.: Satisfiability modulo theory chains with DPLL(T). In Verimag Technical Report (2006), http://www-verimag.imag.fr/TR/TR-2006-4.pdf

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(1), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eèn, N., Sorensson, N.: Minisat – a sat solver with conflict-clause minimization. In: SAT 2005 (2005)

    Google Scholar 

  9. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths and negative cycles detection on digraphs with arbitrary arc weights. In: European Symposium on Algorithms, pp. 320–331 (1998)

    Google Scholar 

  10. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Goldberg, A.V.: Shortests path algorithms: Engineering aspects. In: Proceedings of the Internation Symposium of Algorithms and Computation (2001)

    Google Scholar 

  12. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust SAT solver (2002)

    Google Scholar 

  13. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. Assoc. Comput. Mach. 24(1) (1977)

    Google Scholar 

  14. Marquez-Silva, J.P., Sakallah, K.A.: Grasp – a new search algorithm for satisfiability. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 220–227. Springer, Heidelberg (1996)

    Google Scholar 

  15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001 (2001)

    Google Scholar 

  16. Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of Timed Automata via Satisfiability Checking. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 225–243. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Ranise, S., Tinelli, C.: The SMT-LIB format: An initial proposal. In: PDPAR (July 2003)

    Google Scholar 

  20. Tarjan, R.E.: Shortest paths. AT&T Technical Reports. AT&T Bell Laboratories (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cotton, S., Maler, O. (2006). Fast and Flexible Difference Constraint Propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_19

Download citation

  • DOI: https://doi.org/10.1007/11814948_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics