Nothing Special   »   [go: up one dir, main page]

Skip to main content

Understanding Zooplankton Long Term Variability through Genetic Programming

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Zooplankton are considered good indicators for understanding how oceans are affected by climate change. While climate influence on zooplankton abundance variability is currently accepted, its mechanisms are not understood, and prediction is not yet possible. This paper utilizes the Genetic Programming approach to identify which environmental variables, and at which extent, can be used to express zooplankton abundance dynamics. The zooplankton copepod long term (since 1988) time series from the L4 station in the Western English Channel, has been used as test case together with local environmental parameters and large scale climate indices. The performed simulations identify a set of relevant ecological drivers and highlight the non linear dynamics of the Copepod variability. These results indicate GP to be a promising approach for understanding the long term variability of marine populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beaugrand, G.: Decadal changes in climate and ecosystems in the north atlantic ocean and adjacent seas. Deep-Sea Research 56(8-10), 656–673 (2009)

    Article  Google Scholar 

  2. Conversi, A., Umani, S.F., Peluso, T., Molinero, J.C., Santojanni, A., Edwards, M.: The mediterranean sea regime shift at the end of the 1980s, and intriguing parallelisms with other european basins. PLOS ONE 5(5) (2010)

    Google Scholar 

  3. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction, Foundations and Applications. Studies in Fuzziness and Soft Computing, vol. 207. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Marques, S., Azeiteiro, U., Leandro, S., Queiroga, H., Primo, A., Martinho, F., Viegas, I., Pardal, M.: Predicting zooplankton response to environmental changes in a temperate estuarine ecosystem. Marine Biology 155, 531–541 (2008)

    Article  Google Scholar 

  5. Record, N., Pershing, A., Runge, J., Mayo, C., Monger, B., Chen, C.: Improving ecological forecasts of copepod community dynamics using genetic algorithms. Journal of Marine Systems 82(3), 96–110 (2010)

    Article  Google Scholar 

  6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008), http://www.gp-field-guide.org.uk

  8. Muttil, N., Chau, K.W.: Machine-learning paradigms for selecting ecologically significant input variables. Eng. Appl. Artif. Intell. 20, 735–744 (2007)

    Article  Google Scholar 

  9. Tung, C.P., Lee, T.Y., Yang, Y.C.E., Chen, Y.J.: Application of genetic programming to project climate change impacts on the population of formosan landlocked salmon. Environ. Model. Softw. 24, 1062–1072 (2009)

    Article  Google Scholar 

  10. Ali Ghorbani, M., Khatibi, R., Aytek, A., Makarynskyy, O., Shiri, J.: Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput. Geosci. 36, 620–627 (2010)

    Article  Google Scholar 

  11. (WCO), http://www.westernchannelobservatory.org.uk/

  12. Eloire, D., Somerfield, P.J., Conway, D.V.P., Halsband-Lenk, C., Harris, R., Bonnet, D.: Temporal variability and community composition of zooplankton at station l4 in the western channel: 20 years of sampling. Journal of Plankton Research 32(5), 657–679 (2010)

    Article  Google Scholar 

  13. (NOA-CPC), ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh

  14. (UEA-CRU), http://www.cru.uea.ac.uk/cru/data/temperature/

  15. (NOA-ESRL), http://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.-mean.data

  16. Perone, C.S.: Pyevolve 0.6rc1, http://pyevolve.sourceforge.net/0_6rc1/

  17. Iba, H., Nikolaev, N.: Genetic programming polynomial models of financial data series. In: Proc. of the Congress on Evolutionary Computation, pp. 1459–1466. IEEE Press (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, S., Conversi, A. (2012). Understanding Zooplankton Long Term Variability through Genetic Programming. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics