Abstract
This paper studies the impact of varying the population’s size and the problem’s dimensionality in a parallel implementation, for an NVIDIA GPU, of a canonical GA. The results show that there is an effective gain in the data parallel model provided by modern GPU’s and enhanced by high level languages such as OpenCL. In the reported experiments it was possible to obtain a speedup higher than 140 thousand times for a population’s size of 262 144 individuals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Woodward, P., Jayaraj, J., Lin, P.-H., Yew, P.-C.: Moving Scientific Codes to Multicore Microprocessor CPUs. Comput. in Sci. & Engineering 10(6), 16–25 (2008)
Feinbube, F., Troger, P., Polze, A.: Joint Forces: From Multithreaded Programming to GPU Computing. IEEE Software 28(1), 51–57 (2011)
Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. Calc. Parallels 10 (1998)
Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1493–1500 (2009)
Pospichal, P., Jaros, J., Schwarz, J.: Parallel Genetic Algorithm on the CUDA Architecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 442–451. Springer, Heidelberg (2010)
de Veronese, L., Krohling, R.: Differential evolution algorithm on the GPU with C-CUDA. In: IEEE Congress on Evolutionary Computation, CEC 2010, pp. 1–7 (2010)
Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation Series, vol. 5. Springer, Heidelberg (2002)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, New York (2001)
Goldberg, D.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley (1989)
Beasley, D., Bull, D., Martin, R.: An overview of genetic algorithms: Part 2, research topics. University Computing 15(4), 170–181 (1993)
Janikow, C., Michalewicz, Z.: An experimental comparison of binary and floating point representations in genetic algorithms. In: Proc. of the Fourth International Conference in Genetic Algorithms, pp. 31–36 (1991)
Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd., Oxford Univ. Press, Bristol, New York (1997)
Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Valente de Oliveira, J.: Semantic constraints for membership function optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Man 29(1), 128–138 (1999)
Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata, vol. 3, pp. 187–202. Morgan Kaufmann, San Mateo (1993)
NVIDIA Corporation: NVIDIA CUDA Programming guide, version 2.3.2 (2009)
Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: stream computing on graphics hardware. In: ACM SIGGRAPH, pp. 777–786 (2004)
Khronos group: OpenCl – The Open Standard Parallel Computing for Heterogeneous Devices (2010), http://www.khronos.org/opencl/
Munshi, A. (ed.): The OpenCL Specification Version: 1.1, Khronos OpenCL Working Group (2011)
NVIDIA OpenCL Best Practices Guide, Version 1.0 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prata, P., Fazendeiro, P., Sequeira, P. (2011). Towards Cost-Effective Bio-inspired Optimization: A Prospective Study on the GPU Architecture. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2011. Lecture Notes in Computer Science, vol 7077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27242-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-27242-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27241-7
Online ISBN: 978-3-642-27242-4
eBook Packages: Computer ScienceComputer Science (R0)