Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallel Genetic Algorithm on the CUDA Architecture

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6024))

Included in the following conference series:

Abstract

This paper deals with the mapping of the parallel island-based genetic algorithm with unidirectional ring migrations to nVidia CUDA software model. The proposed mapping is tested using Rosenbrock’s, Griewank’s and Michalewicz’s benchmark functions. The obtained results indicate that our approach leads to speedups up to seven thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have a potential for acceleration of GAs and allow to solve much complex tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pharr, M., Fernando, R.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Addison-Wesley Professional, Reading (2005)

    Google Scholar 

  2. Nguyen, H.: GPU gems 3. Addison-Wesley Professional, Reading (2007)

    Google Scholar 

  3. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  4. Jiang, C., Snir, M.: Automatic Tuning Matrix Multiplication Performance on Graphics Hardware. In: Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques, pp. 185–196 (2005)

    Google Scholar 

  5. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware. In: Proceedings of the ACM/IEEE SC 2005 Conference, vol. 3 (2005)

    Google Scholar 

  6. Cant-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  7. NVIDIA, C.: Compute Unified Device Architecture Programming Guide. NVIDIA: Santa Clara, CA (2007)

    Google Scholar 

  8. Munshi, A.: The OpenCL specification version 1.0. Khronos OpenCL Working Group (2009)

    Google Scholar 

  9. Harris, M., Luebke, D.: GPGPU: General-purpose computation on graphics hardware. In: Proceedings of the International Conference on Computer Graphics and Interactive Techniques: ACM SIGGRAPH 2005 Courses, Los Angeles, California (2005)

    Google Scholar 

  10. Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics hardware. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1051–1059. Springer, Heidelberg (2005)

    Google Scholar 

  11. Li, J.-M., Wang, X.-J., He, R.-S., Chi, Z.-X.: An efficient fine-grained parallel genetic algorithm based on gpu-accelerated. In: IFIP International Conference on Network and Parallel Computing Workshops, NPC Workshops, pp. 855–862 (2007)

    Google Scholar 

  12. Maitre, Q., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain parallelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation table of contents, Montreal, Qubec, Canada, pp. 1403–1410 (2009) ISBN 978-1-60558-325-9

    Google Scholar 

  13. Wong, M.L., Wong, T.T.: Implementation of Parallel Genetic Algorithms on Graphics Processing Units. In: Intelligent and Evolutionary Systems, vol. 187, pp. 197–216. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Matthew, W.: GAlib: A C++ Library of Genetic Algorithm Components. Massachusetts Institute of Technology (1996)

    Google Scholar 

  15. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Studies in Computational Intelligence. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pospichal, P., Jaros, J., Schwarz, J. (2010). Parallel Genetic Algorithm on the CUDA Architecture. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12239-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12238-5

  • Online ISBN: 978-3-642-12239-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics