Abstract
We present an approach for proving behavioral properties of numerical programs by analyzing their compiled assembly code. We focus on the issues and traps that may arise on floating-point computations. Direct analysis of the assembly code allows us to take into account architecture- or compiler-dependent features such as the possible use of extended precision registers.
The approach is implemented on top of the generic Why platform for deductive verification, which allows us to perform experiments where proofs are discharged by combining several back-end automatic provers.
This work was partly funded by the U3CAT project (ANR-08-SEGI-021, http://frama-c.com/u3cat/ ) of the French national research organization (ANR), and the Hisseo project, funded by Digiteo ( http://hisseo.saclay.inria.fr/ )
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEEE standard for floating-point arithmetic. Technical report (2008), http://dx.doi.org/10.1109/IEEESTD.2008.4610935
Ayad, A., Marché, C.: Multi-Prover Verification of Floating-Point Programs. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 127–141. Springer, Heidelberg (2010)
Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: 6th PASTE, New York, NY, USA, pp. 82–87. ACM (2005)
Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)
Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)
Barthe, G., Rezk, T., Saabas, A.: Proof Obligations Preserving Compilation. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2006)
Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ANSI/ISO C Specification Language (2009), http://frama-c.cea.fr/acsl.html
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004)
Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.: The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/
Boldo, S., Filliâtre, J.-C.: Formal Verification of Floating-Point Programs. In: 18th ARITH, pp. 187–194 (June 2007)
Boldo, S., Marché, C.: Formal verification of numerical programs: from C annotated programs to mechanical proofs. In: Mathematics in Computer Science (2011)
Boldo, S., Nguyen, T.M.T.: Hardware-independent proofs of numerical programs. In: 2nd NASA Formal Methods Symposium, pp. 14–23 (April 2010)
Boldo, S., Nguyen, T.M.T.: Proofs of numerical programs when the compiler optimizes. Innovations in Systems and Software Engineering 7, 151–160 (2011)
Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used microprocessor. J. ACM 43(1), 166–192 (1996)
Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and applications. Technical Report NIII-R0309, Dept. of Computer Science, University of Nijmegen (2003)
Burdy, L., Pavlova, M.: Java bytecode specification and verification. In: SAC, pp. 1835–1839. ACM (2006)
Carreño, V.A., Miner, P.S.: Specification of the IEEE-854 floating-point standard in HOL and PVS. In: HOL 1995 (September 1995)
Colby, C., Lee, P., Necula, G., Blau, F., Plesko, M., Cline, K.: A certifying compiler for Java. In: PLDI, pp. 95–107. ACM (2000)
Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)
Cuoq, P., Prevosto, V.: Value Plugin Documentation, Carbon version. In: CEA-List (2011), http://frama-c.com/download/frama-c-value-analysis.pdf
de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an Industrial use of FLUCTUAT on Safety-Critical Avionics Software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)
Dowek, G., Muñoz, C.: Conflict detection and resolution for 1,2,.,N aircraft. In: 7th AIAA Aviation, Technology, Integration, and Operations Conference (2007)
Filliâtre, J.-C.: Formal Verification of MIX Programs. In: Journées en l’honneur de Donald E. Knuth (2007), http://knuth07.labri.fr/exposes.php
Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)
Harrison, J.: Formal Verification of Floating Point Trigonometric Functions. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg (2000)
Leavens, G.T.: Not a number of floating point problems. Journal of Object Technology 5(2), 75–83 (2006)
Melquiond, G.: Proving Bounds on Real-Valued Functions with Computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 2–17. Springer, Heidelberg (2008)
Monniaux, D.: The pitfalls of verifying floating-point computations. Transactions on Programming Languages and Systems 30(3), 12 (2008)
Moy, Y., Marché, C.: Jessie Plugin Tutorial, Beryllium version. INRIA (2009), http://www.frama-c.cea.fr/jessie.html
Myreen, M.O.: Formal verification of machine-code programs. PhD thesis, University of Cambridge (2008)
Nguyen, T.M.T., Marché, C.: Proving floating-point numerical programs by analysis of their assembly code. Research Report 7655, INRIA (2011), http://hal.inria.fr/inria-00602266/en/
Rival, X.: Abstract Interpretation-Based Certification of Assembly Code. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 41–55. Springer, Heidelberg (2002)
Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating point multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal of Computation and Mathematics 1, 148–200 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, T.M.T., Marché, C. (2011). Hardware-Dependent Proofs of Numerical Programs. In: Jouannaud, JP., Shao, Z. (eds) Certified Programs and Proofs. CPP 2011. Lecture Notes in Computer Science, vol 7086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25379-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-25379-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25378-2
Online ISBN: 978-3-642-25379-9
eBook Packages: Computer ScienceComputer Science (R0)