Abstract
We have formal verified a number of algorithms for evaluat-ing transcendental functions in double-extended precision floating point arithmetic in the Intel® IA-64 architecture. These algorithms are used in the ItaniumTM processor to provide compatibility with IA-32 (x86) hardware transcendentals, and similar ones are used in mathematical software libraries. In this paper we describe in some depth the formal verification of the sin and cos functions, including the initial range reduction step. This illustrates the diferent facets of verification in this field, covering both pure mathematics and the detailed analysis of floating point rounding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation of various polylogarithmic constants. Mathematics of Computation, 66:903–913, 1997.
A. Baker. A Consise Introduction to the Theory of Numbers. Cambridge University Press, 1985.
G. Cousineau and M. Mauny. The Functional Approach to Programming. Cam-bridge University Press, 1998.
T. J. Dekker. A floating-point technique for extending the available precision. Numerical Mathematics, 18:224–242, 1971.
M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.
R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-dation for Computer Science. Addison-Wesley, 2nd edition, 1994.
J. Harrison. HOL Light: A tutorial introduction. In M. Srivas and A. Camilleri, editors, Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of Lecture Notes in mputerScience, pages 265–269. Springer-Verlag, 1996.
J. Harrison. Verifying the accuracy of polynomial approximations in HOL. In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics: 10th International Conference, TPHOLs’97, volume 1275 of Lecture Notes in Computer Science, pages 137–152, Murray Hill, NJ, 1997. Springer-Verlag.
J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998. Revised version of author’s PhD thesis.
J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Logics: 12th International Conference, TPHOLs’99, volume 1690 of Lecture Notes in Computer Science, pages 113–130, Nice, France, 1999. Springer-Verlag.
J. Harrison, T. Kubaska, S. Story, and P. Tang. The computation of transcendental functions on the IA-64 architecture. Intel Technology Journal, 1999-2Q4:1–7, 1999. This paper is available on the Web as http://developer.intel.com/technology/itj/q41999/articles/art_5.htm
O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50, 1965.
M. E. Remes. Sur le calcul effectif des polynomes d'approximation de Tchebichef. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 199:337–340, 1934.
P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, 1974.
S. Story and P. T. P. Tang. New algorithms for improved transcendental functions on IA-64. In I. Koren and P. Kornerup, editors, Proceedings, 14th IEEE symposium on on computer arithmetic, pages 4–11, Adelaide, Australia, 1999. IEEE Computer Society.
P. T. P. Tang. Table-lookup algorithms for elementary functions and their error analysis. In Proceedings of the 10th Symposium on Computer Arithemtic, pages 232–236, 1991.
P. Weis and X. Leroy. Le langage Caml. InterEditions, 1993. See also the CAML Web page: http://pauillac.inria.fr/caml/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harrison, J. (2000). Formal Verification of Floating Point Trigonometric Functions. In: Hunt, W.A., Johnson, S.D. (eds) Formal Methods in Computer-Aided Design. FMCAD 2000. Lecture Notes in Computer Science, vol 1954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40922-X_14
Download citation
DOI: https://doi.org/10.1007/3-540-40922-X_14
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41219-9
Online ISBN: 978-3-540-40922-9
eBook Packages: Springer Book Archive