Abstract
We discuss the role of generalized approximation spaces and operations on approximation spaces in searching for relevant patterns. The approach is based on interactive rough-granular computing (IRGC) in the WisTech program. We also present results on approximation of complex vague concepts in real-life projects from different domains using the approach based on ontology approximation. Software projects supporting IRGC are reported.
Chapter PDF
Similar content being viewed by others
Keywords
- Atomic Formula
- Approximation Space
- Granular Computing
- Minimal Description Length Principle
- Approximation Operation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)
Bazan, J., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–62. Springer, Heidelberg (2006)
Grzymała-Busse, J., Rza̧sa, W.: Local and global approximations for incomplete data. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets VIII. LNCS, vol. 5084, pp. 21–34. Springer, Heidelberg (2008)
Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2008)
Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)
Ng, K.S., Lloyd, J.W., Uther, W.T.B.: Probabilistic modelling, inference and learning using logical theories. Annals of Mathematics and Artificial Intelligence 54(1-3), 159–205 (2008)
Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 344–523. Springer, Heidelberg (2006)
Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, IGI Global, Hershey (accepted)
Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 2509–2517 (2005)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007); Rough sets: Some extensions. Information Sciences 177(1), 28–40
Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)
Peters, J., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71(2,3), 323–349 (2006)
Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
The Rough Set Interactive Classificstion Engine (RoughICE), http://logic.mimuw.edu.pl/~bazan/roughice
The Rough Set Exploration System (RSES), http://logic.mimuw.edu.pl/~rses
The RSES-lib project, http://rsproject.mimuw.edu.pl
The road simulator, http://logic.mimuw.edu.pl/~bazan/simulator
The TunedIT platform, http://tunedit.org/
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)
Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Approximation spaces revisited. In: Proceedings of the Concurrency, Specification & Programming 2009 (CS&P 2009), Przegorzały, Kraków, Poland, September 28-30, pp. 538–549. Warsaw University (2009)
Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Wierzchon, S.T., Ras, Z.W., Kacprzyk, J. (eds.) Advances in Machine learning II, Dedicated to the memory of Ryszard Michalski. Studies in Computational Intelligence, vol. 263, pp. 1–20. Springer, Heidelberg (2009) (in print)
Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skowron, A., Bazan, J., Wojnarski, M. (2009). Interactive Rough-Granular Computing in Pattern Recognition. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2009. Lecture Notes in Computer Science, vol 5909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11164-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-11164-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11163-1
Online ISBN: 978-3-642-11164-8
eBook Packages: Computer ScienceComputer Science (R0)