Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rough Sets and Vague Concept Approximation: From Sample Approximation to Adaptive Learning

  • Conference paper
Transactions on Rough Sets V

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 4100))

Abstract

We present a rough set approach to vague concept approximation. Approximation spaces used for concept approximation have been initially defined on samples of objects (decision tables) representing partial information about concepts. Such approximation spaces defined on samples are next inductively extended on the whole object universe. This makes it possible to define the concept approximation on extensions of samples. We discuss the role of inductive extensions of approximation spaces in searching for concept approximation. However, searching for relevant inductive extensions of approximation spaces defined on samples is infeasible for compound concepts. We outline an approach making this searching feasible by using a concept ontology specified by domain knowledge and its approximation. We also extend this approach to a framework for adaptive approximation of vague concepts by agents interacting with environments. This paper realizes a step toward approximate reasoning in multiagent systems (MAS), intelligent systems, and complex dynamic systems (CAS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axaelrod, R.M.: The Complexity of Cooperation. Princeton University Press, Princeton (1997)

    Google Scholar 

  2. Bazan, J.G., Nguyen, H.S., Peters, J.F., Skowron, A., Szczuka, M.: Rough set approach to pattern extraction from classifiers. In: Skowron, A., Szczuka, M. (eds.) Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003 (RSKD 2003). Electronic Notes in Computer Science, vol. 82(4), pp. 20–29. Elsevier, Amsterdam (1980), www.elsevier.nl/locate/entcs/volume82.html

    Google Scholar 

  3. Bazan, J.G., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: [54], pp. 688–697 (2005)

    Google Scholar 

  4. Bazan, J.G., Skowron, A.: On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: [30], pp. 720–725 (2005)

    Google Scholar 

  5. Bazan, J.G., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Tasks in Multiagent Systems MSRAS. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Breiman, L.: Statistical modeling: The two cultures. Statistical Science 16(3), 199–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Desai, A.: Adaptive Complex Enterprices. Communications ACM 48(5), 32–35 (2005)

    Article  Google Scholar 

  8. Dietterich, T.G.: Machine Learning Research: Four Current Directions. AI Magazine 18(4), 97–136 (1997)

    Google Scholar 

  9. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Artificial Intelligence 13, 227–303 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Morgan Kaufmann (2004)

    Google Scholar 

  12. Gell-Mann, M.: The Quark and the Jaguar. Freeman and Co., New York (1994)

    MATH  Google Scholar 

  13. Giraud-Carrier, Ch.: A note on the utility of incremental learning. AI Communications 13(4), 215–223 (2000)

    MATH  Google Scholar 

  14. McGovern, A.: Autonomous Discovery of Temporal Abstractions from Interaction with an Environment. PhD thesis, University of Massachusetts Amherst (2002)

    Google Scholar 

  15. Hoen, P.J., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A.H.: An Overview of Cooperative and Competitive Multiagent Learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 1–46. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Kautz, H., Selman, B., Jiang, Y.: A General Stochastic Approach to Solving Problems with Hard and Soft Constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) The Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 573–586. American Mathematical Society, Providence (1997)

    Google Scholar 

  17. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  18. Keefe, R.R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge (2000)

    Google Scholar 

  19. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  20. Krawiec, K., Słowiński, R., Vanderpooten, D.: Lerning decision rules from similarity based rough approximations. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 37–54. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  21. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Interaction. A Roadmap for Agent-Based Computing. Agentlink III, the European Coordination Action for Agent-Based Computing, University of Southampton, UK (2005)

    Google Scholar 

  22. Marx, L.M.: Adaptive learning and iterated weak dominance. Games and Economic Behavior 26, 253–278 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In: Proceedings of the 5th National Conference on Artificial Intelligence, pp. 1041–1047. Morgan Kaufmann, Philadelphia (1986)

    Google Scholar 

  24. Milgrom, P., Roberts, J.: Adaptive and sophisticated learning in normal form games. Games Economic Behavior 3, 82–100 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nguyen, S.H.: Regularity analysis and its applications in Data Mining. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 289–378. Physica-Verlag, Heidelberg (2000)

    Google Scholar 

  26. Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Nguyen, T.T., Skowron, A.: Rough set approach to domain knowledge approximation. In: [64], pp. 221–228 (2003)

    Google Scholar 

  28. Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: [30], pp. 762–767 (2005)

    Google Scholar 

  29. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  30. Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.): PReMI 2005. LNCS, vol. 3776. Springer, Heidelberg (2005)

    Google Scholar 

  31. Pavelka, J.: On Fuzzy Logic I-III. Zeit. Math Logik Grund. Math. 25, 45–52, 119–134, 447–464 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  33. Pawlak, Z., Skowron, A.: Rough Membership Functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Schafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)

    Google Scholar 

  34. Peters, J.F., Henry, C.: Reinforcement Learning with Approximation Spaces. Fundamenta Informaticae 71(2-3), 323–349 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets III. LNCS, vol. 3400. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  36. Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  37. Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17, 472–492 (2001)

    Article  MathSciNet  Google Scholar 

  39. Randlov, J.: Solving Complex Problems with Reinforcement Learning. Ph.D. Thesis, University of Copenhagen (2001)

    Google Scholar 

  40. Read, S.: Thinking about Logic. An Introduction to the Philosophy of Logic. Oxford University Press, Oxford (1995)

    Google Scholar 

  41. Rissanen, J.: Modeling by shortes data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  42. Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. John Wiley & Sons, New York (1985)

    Google Scholar 

  43. Skowron, A.: Rough Sets in KDD. 16-th World Computer Congress (IFIP 2000). In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing (IIP 2000), Beijing, August 19-25, 2000, pp. 1–17. Publishing House of Electronic Industry (2000)

    Google Scholar 

  44. Skowron, A.: Rough Sets and Vague Concepts. Fundamenta Informaticae 4(1-4), 417–431 (2005)

    MathSciNet  Google Scholar 

  45. Skowron, A.: Approximate reasoning in distributed environments. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, vol, pp. 433–474. Springer, Heidelberg

    Google Scholar 

  46. Skowron, A., Peters, J.F.: Rough sets: Trends and challenges. In: [64], pp. 25–34 (2003)

    Google Scholar 

  47. Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  48. Skowron, A., Stepaniuk, J.: Information Granules and Rough-Neural Computing. In: [29], pp. 43–84 (2004)

    Google Scholar 

  49. Skowron, A., Stepaniuk, J.: Ontological framework for approximation. In: [53], pp. 718–727 (2005)

    Google Scholar 

  50. Skowron, A., Swiniarski, R.: Rough sets and higher order vagueness. In: [53], pp. 33–42 (2005)

    Google Scholar 

  51. Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: [35], pp. 175–189 (2004)

    Google Scholar 

  52. Ślȩzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53, 365–387 (2002)

    MathSciNet  Google Scholar 

  53. Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3641. Springer, Heidelberg (2005)

    Google Scholar 

  54. Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3642. Springer, Heidelberg (2005)

    Google Scholar 

  55. Stepaniuk, J., Bazan, J., Skowron, A.: Modelling complex patterns by information systems. Fundamenta Informaticae 67(1-3), 203–217 (2005)

    MATH  MathSciNet  Google Scholar 

  56. Stepaniuk, J., Skowron, A., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 2206 (to appear)

    Google Scholar 

  57. Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)

    Google Scholar 

  58. Sun, R. (ed.): Cognition and Multi-Agent Interaction. From Cognitive Modeling to Social Simulation. Cambridge University Press, New York (2006)

    Google Scholar 

  59. Suraj, Z.: The synthesis problem of concurrent systems specified by dynamic information systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 418–448. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  60. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  61. Utgoff, P.: An incremental ID3. In: Proceedings of the Fifth International Workshop on Machine Learning, Ann Arbor, Michigan, June 12-14, 1988, pp. 107–120. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  62. Van Wezel, W., Jorna, R., Meystel, A.: Planning in Intelligent Systems: Aspects, Motivations, and Methods. John Wiley & Sons, Hoboken (2006)

    Book  MATH  Google Scholar 

  63. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  64. Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.): RSFDGrC 2003. LNCS (LNAI), vol. 2639. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  65. Wojna, A.: Constraint Based Incremental Learning of Classification Rules. In: [71], pp. 428–435 (2001)

    Google Scholar 

  66. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 333–353 (1965)

    Article  MathSciNet  Google Scholar 

  67. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. Trans. on Systems, Man and Cybernetics SMC-3, 28–44 (1973)

    Article  MathSciNet  Google Scholar 

  68. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Information Sciences 8, 199–257, 301–357; 9, 43–80 (1975)

    Article  MathSciNet  Google Scholar 

  69. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 2, 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  70. Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  71. Ziarko, W.P., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J., Skowron, A., Swiniarski, R. (2006). Rough Sets and Vague Concept Approximation: From Sample Approximation to Adaptive Learning. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_3

Download citation

  • DOI: https://doi.org/10.1007/11847465_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39382-5

  • Online ISBN: 978-3-540-39383-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics