Abstract
We present a rough set approach to vague concept approximation. Approximation spaces used for concept approximation have been initially defined on samples of objects (decision tables) representing partial information about concepts. Such approximation spaces defined on samples are next inductively extended on the whole object universe. This makes it possible to define the concept approximation on extensions of samples. We discuss the role of inductive extensions of approximation spaces in searching for concept approximation. However, searching for relevant inductive extensions of approximation spaces defined on samples is infeasible for compound concepts. We outline an approach making this searching feasible by using a concept ontology specified by domain knowledge and its approximation. We also extend this approach to a framework for adaptive approximation of vague concepts by agents interacting with environments. This paper realizes a step toward approximate reasoning in multiagent systems (MAS), intelligent systems, and complex dynamic systems (CAS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Axaelrod, R.M.: The Complexity of Cooperation. Princeton University Press, Princeton (1997)
Bazan, J.G., Nguyen, H.S., Peters, J.F., Skowron, A., Szczuka, M.: Rough set approach to pattern extraction from classifiers. In: Skowron, A., Szczuka, M. (eds.) Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS 2003 (RSKD 2003). Electronic Notes in Computer Science, vol. 82(4), pp. 20–29. Elsevier, Amsterdam (1980), www.elsevier.nl/locate/entcs/volume82.html
Bazan, J.G., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: [54], pp. 688–697 (2005)
Bazan, J.G., Skowron, A.: On-line elimination of non-relevant parts of complex objects in behavioral pattern identification. In: [30], pp. 720–725 (2005)
Bazan, J.G., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Tasks in Multiagent Systems MSRAS. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)
Breiman, L.: Statistical modeling: The two cultures. Statistical Science 16(3), 199–231 (2001)
Desai, A.: Adaptive Complex Enterprices. Communications ACM 48(5), 32–35 (2005)
Dietterich, T.G.: Machine Learning Research: Four Current Directions. AI Magazine 18(4), 97–136 (1997)
Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Artificial Intelligence 13, 227–303 (2000)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Morgan Kaufmann (2004)
Gell-Mann, M.: The Quark and the Jaguar. Freeman and Co., New York (1994)
Giraud-Carrier, Ch.: A note on the utility of incremental learning. AI Communications 13(4), 215–223 (2000)
McGovern, A.: Autonomous Discovery of Temporal Abstractions from Interaction with an Environment. PhD thesis, University of Massachusetts Amherst (2002)
Hoen, P.J., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A.H.: An Overview of Cooperative and Competitive Multiagent Learning. In: Tuyls, K., Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 1–46. Springer, Heidelberg (2006)
Kautz, H., Selman, B., Jiang, Y.: A General Stochastic Approach to Solving Problems with Hard and Soft Constraints. In: Gu, D., Du, J., Pardalos, P. (eds.) The Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 573–586. American Mathematical Society, Providence (1997)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)
Keefe, R.R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge (2000)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Krawiec, K., Słowiński, R., Vanderpooten, D.: Lerning decision rules from similarity based rough approximations. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 37–54. Physica-Verlag, Heidelberg (1998)
Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Interaction. A Roadmap for Agent-Based Computing. Agentlink III, the European Coordination Action for Agent-Based Computing, University of Southampton, UK (2005)
Marx, L.M.: Adaptive learning and iterated weak dominance. Games and Economic Behavior 26, 253–278 (1999)
Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In: Proceedings of the 5th National Conference on Artificial Intelligence, pp. 1041–1047. Morgan Kaufmann, Philadelphia (1986)
Milgrom, P., Roberts, J.: Adaptive and sophisticated learning in normal form games. Games Economic Behavior 3, 82–100 (1991)
Nguyen, S.H.: Regularity analysis and its applications in Data Mining. In: Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 289–378. Physica-Verlag, Heidelberg (2000)
Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)
Nguyen, T.T., Skowron, A.: Rough set approach to domain knowledge approximation. In: [64], pp. 221–228 (2003)
Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: [30], pp. 762–767 (2005)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)
Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.): PReMI 2005. LNCS, vol. 3776. Springer, Heidelberg (2005)
Pavelka, J.: On Fuzzy Logic I-III. Zeit. Math Logik Grund. Math. 25, 45–52, 119–134, 447–464 (1979)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough Membership Functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Schafer Theory of Evidence, pp. 251–271. John Wiley and Sons, New York (1994)
Peters, J.F., Henry, C.: Reinforcement Learning with Approximation Spaces. Fundamenta Informaticae 71(2-3), 323–349 (2006)
Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets III. LNCS, vol. 3400. Springer, Heidelberg (2005)
Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)
Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17, 472–492 (2001)
Randlov, J.: Solving Complex Problems with Reinforcement Learning. Ph.D. Thesis, University of Copenhagen (2001)
Read, S.: Thinking about Logic. An Introduction to the Philosophy of Logic. Oxford University Press, Oxford (1995)
Rissanen, J.: Modeling by shortes data description. Automatica 14, 465–471 (1978)
Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. John Wiley & Sons, New York (1985)
Skowron, A.: Rough Sets in KDD. 16-th World Computer Congress (IFIP 2000). In: Shi, Z., Faltings, B., Musen, M. (eds.) Proceedings of Conference on Intelligent Information Processing (IIP 2000), Beijing, August 19-25, 2000, pp. 1–17. Publishing House of Electronic Industry (2000)
Skowron, A.: Rough Sets and Vague Concepts. Fundamenta Informaticae 4(1-4), 417–431 (2005)
Skowron, A.: Approximate reasoning in distributed environments. In: Zhong, N., Liu, J. (eds.) Intelligent Technologies for Information Analysis, vol, pp. 433–474. Springer, Heidelberg
Skowron, A., Peters, J.F.: Rough sets: Trends and challenges. In: [64], pp. 25–34 (2003)
Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A., Stepaniuk, J.: Information Granules and Rough-Neural Computing. In: [29], pp. 43–84 (2004)
Skowron, A., Stepaniuk, J.: Ontological framework for approximation. In: [53], pp. 718–727 (2005)
Skowron, A., Swiniarski, R.: Rough sets and higher order vagueness. In: [53], pp. 33–42 (2005)
Skowron, A., Swiniarski, R., Synak, P.: Approximation spaces and information granulation. In: [35], pp. 175–189 (2004)
Ślȩzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53, 365–387 (2002)
Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3641. Springer, Heidelberg (2005)
Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.): RSFDGrC 2005. LNCS (LNAI), vol. 3642. Springer, Heidelberg (2005)
Stepaniuk, J., Bazan, J., Skowron, A.: Modelling complex patterns by information systems. Fundamenta Informaticae 67(1-3), 203–217 (2005)
Stepaniuk, J., Skowron, A., Peters, J.F., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 2206 (to appear)
Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)
Sun, R. (ed.): Cognition and Multi-Agent Interaction. From Cognitive Modeling to Social Simulation. Cambridge University Press, New York (2006)
Suraj, Z.: The synthesis problem of concurrent systems specified by dynamic information systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, pp. 418–448. Physica-Verlag, Heidelberg (1998)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Utgoff, P.: An incremental ID3. In: Proceedings of the Fifth International Workshop on Machine Learning, Ann Arbor, Michigan, June 12-14, 1988, pp. 107–120. Morgan Kaufmann, San Francisco (1988)
Van Wezel, W., Jorna, R., Meystel, A.: Planning in Intelligent Systems: Aspects, Motivations, and Methods. John Wiley & Sons, Hoboken (2006)
Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.): RSFDGrC 2003. LNCS (LNAI), vol. 2639. Springer, Heidelberg (2003)
Wojna, A.: Constraint Based Incremental Learning of Classification Rules. In: [71], pp. 428–435 (2001)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 333–353 (1965)
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. Trans. on Systems, Man and Cybernetics SMC-3, 28–44 (1973)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Information Sciences 8, 199–257, 301–357; 9, 43–80 (1975)
Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 2, 103–111 (1996)
Ziarko, W.: Variable Precision Rough Set Model. Journal of Computer and System Sciences 46, 39–59 (1993)
Ziarko, W.P., Yao, Y. (eds.): RSCTC 2000. LNCS (LNAI), vol. 2005. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J., Skowron, A., Swiniarski, R. (2006). Rough Sets and Vague Concept Approximation: From Sample Approximation to Adaptive Learning. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847465_3
Download citation
DOI: https://doi.org/10.1007/11847465_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39382-5
Online ISBN: 978-3-540-39383-2
eBook Packages: Computer ScienceComputer Science (R0)