Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 93))

  • 829 Accesses

Abstract

In recent years, there have been considerable advances in the use of genome-scale metabolic models to provide accurate phenotype simulation methods, which in turn enabled the development of efficient strain optimization algorithms for Metabolic Engineering. In this work, we address some of the limitations of previous studies regarding strain optimization algorithms, mainly its use of Flux Balance Analysis in the simulation layer.We perform a thorough analysis of previous results by relying on Flux Variability Analysis and on alternative methods for phenotype simulation, such as ROOM. This last method is also used in the simulation layer, as a basis for optimization, and the results obtained are also the target of thorough analysis and comparison with previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ibarra, R.U., Edwards, J.S., Palsson, B.G.: Escherichia coli k-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)

    Article  Google Scholar 

  2. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  3. Lee, S.Y., Hong, S.H., Moon, S.Y.: In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered escherichia coli as an example. Genome Informatics 13, 214–223 (2002)

    Google Scholar 

  4. Nielsen, J.: Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001)

    Article  Google Scholar 

  5. Patil, K., Rocha, I., Forster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(308) (2005)

    Google Scholar 

  6. Patil, K.R., Akesson, M., Nielsen, J.: Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15, 64–69 (2004)

    Article  Google Scholar 

  7. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of escherichia coli k-12 (ijr904 gsm/gpr). Genome Biology 4(9), R54.1–R54.12 (2003)

    Google Scholar 

  8. Rocha, I., Maia, P., Evangelista, P., Vilaa, P., Soares, S., Pinto, J.P., Nielsen, J., Patil, K.R., Ferreira, E.C., Rocha, M.: Optflux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology 4(45) (2010)

    Google Scholar 

  9. Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9 (2008)

    Google Scholar 

  10. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. PNAS 102(21), 7695–7700 (2005)

    Article  Google Scholar 

  11. Vilaça, P., Maia, P., Rocha, I., Rocha, M.: Metaheuristics for strain optimization using transcriptional information enriched metabolic models. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 205–216. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vilaça, P., Maia, P., Rocha, M. (2011). A Study on the Robustness of Strain Optimization Algorithms. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds) 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011). Advances in Intelligent and Soft Computing, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19914-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19914-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19913-4

  • Online ISBN: 978-3-642-19914-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics