Abstract
In recent years, there have been considerable advances in the use of genome-scale metabolic models to provide accurate phenotype simulation methods, which in turn enabled the development of efficient strain optimization algorithms for Metabolic Engineering. In this work, we address some of the limitations of previous studies regarding strain optimization algorithms, mainly its use of Flux Balance Analysis in the simulation layer.We perform a thorough analysis of previous results by relying on Flux Variability Analysis and on alternative methods for phenotype simulation, such as ROOM. This last method is also used in the simulation layer, as a basis for optimization, and the results obtained are also the target of thorough analysis and comparison with previous ones.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ibarra, R.U., Edwards, J.S., Palsson, B.G.: Escherichia coli k-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)
Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)
Lee, S.Y., Hong, S.H., Moon, S.Y.: In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered escherichia coli as an example. Genome Informatics 13, 214–223 (2002)
Nielsen, J.: Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001)
Patil, K., Rocha, I., Forster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(308) (2005)
Patil, K.R., Akesson, M., Nielsen, J.: Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15, 64–69 (2004)
Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of escherichia coli k-12 (ijr904 gsm/gpr). Genome Biology 4(9), R54.1–R54.12 (2003)
Rocha, I., Maia, P., Evangelista, P., Vilaa, P., Soares, S., Pinto, J.P., Nielsen, J., Patil, K.R., Ferreira, E.C., Rocha, M.: Optflux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology 4(45) (2010)
Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9 (2008)
Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. PNAS 102(21), 7695–7700 (2005)
Vilaça, P., Maia, P., Rocha, I., Rocha, M.: Metaheuristics for strain optimization using transcriptional information enriched metabolic models. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 205–216. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vilaça, P., Maia, P., Rocha, M. (2011). A Study on the Robustness of Strain Optimization Algorithms. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds) 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011). Advances in Intelligent and Soft Computing, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19914-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-19914-1_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19913-4
Online ISBN: 978-3-642-19914-1
eBook Packages: EngineeringEngineering (R0)