Nothing Special   »   [go: up one dir, main page]

Skip to main content

Metaheuristics for Strain Optimization Using Transcriptional Information Enriched Metabolic Models

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6023))

Abstract

The identification of a set of genetic manipulations that result in a microbial strain with improved production capabilities of a metabolite with industrial interest is a big challenge in Metabolic Engineering. Evolutionary Algorithms and Simulated Annealing have been used in this task to identify sets of reaction deletions, towards the maximization of a desired objective function. To simulate the cell phenotype for each mutant strain, the Flux Balance Analysis approach is used, assuming organisms have maximized their growth along evolution.

In this work, transcriptional information is added to the models using gene-reaction rules. The aim is to find the (near-)optimal set of gene knockouts necessary to reach a given productivity goal. The results obtained are compared with the ones reached using the deletion of reactions, showing that we obtain solutions with similar quality levels and number of knockouts, but biologically more feasible. Indeed, we show that several of the previous solutions are not viable using the provided rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burgard, A.P., Pharya, P., Maranas, C.D.: Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)

    Article  Google Scholar 

  2. Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov, E., Palsson, B.O.: Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences 26(3), 179–186 (2001)

    Article  Google Scholar 

  3. Duarte, N.C., Herrgård, M.J., Palsson, B.Ø.: Reconstruction and validation of Saccharomyces cerevisiae ind750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14(7), 1298–1309 (2004)

    Article  Google Scholar 

  4. Hofvendahl, K., Hahn-Hagerdal, B.: Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbial Technology 26, 87–107 (2000)

    Article  Google Scholar 

  5. Ibarra, R.U., Edwards, J.S., Palsson, B.G.: Escherichia coli k-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)

    Article  Google Scholar 

  6. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003)

    Article  Google Scholar 

  7. Lee, S.Y., Hong, S.H., Moon, S.Y.: In Silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome Informatics 13, 214–223 (2002)

    Google Scholar 

  8. Nielsen, J.: Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001)

    Article  Google Scholar 

  9. Patil, K., Rocha, I., Forster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 6(308) (2005)

    Google Scholar 

  10. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of Escherichia coli k-12 (ijr904 gsm/gpr). Genome Biology 4(9), R54.1–R54.12 (2003)

    Google Scholar 

  11. Rocha, M., Maia, P., Mendes, R., Pinto, J.P., Ferreira, E.C., Nielsen, J., Patil, K.R., Rocha, I.: Natural computation meta-heuristics for the in silico optimization of microbial strains. BMC Bioinformatics 9 (2008)

    Google Scholar 

  12. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. PNAS 99, 15112–15117 (2002)

    Article  Google Scholar 

  13. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. PNAS 102(21), 7695–7700 (2005)

    Article  Google Scholar 

  14. Stephanopoulos, G., Aristidou, A.A., Nielsen, J.: Metabolic engineering principles and methodologies. Academic Press, San Diego (1998)

    Google Scholar 

  15. Thiele, I., Vo, T.D., Price, N.D., Palsson, B.Ø.: Expanded metabolic reconstruction of Helicobacter pylori (iit341 gsm/gpr): an in silico genome-scale characterization of single- and double-deletion mutants. J. Bacteriol. 187(16), 5818–5830 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vilaça, P., Maia, P., Rocha, I., Rocha, M. (2010). Metaheuristics for Strain Optimization Using Transcriptional Information Enriched Metabolic Models. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2010. Lecture Notes in Computer Science, vol 6023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12211-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12211-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12210-1

  • Online ISBN: 978-3-642-12211-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics