Abstract
Many-objective optimization is a hot issue in the EMO (evolutionary multiobjective optimization) community. Since almost all solutions in the current population are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the case of two and three objectives. One difficulty in the design of many-objective EMO algorithms is that we cannot visually observe the behavior of multiobjective evolution in the objective space with four or more objectives. In this paper, we propose the use of many-objective test problems in a two- or three-dimensional decision space to visually examine the behavior of multiobjective evolution. Such a visual examination helps us to understand the characteristic features of EMO algorithms for many-objective optimization. Good understanding of existing EMO algorithms may facilitates their modification and the development of new EMO algorithms for many-objective optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbass, H.A., Alam, S., Bender, A.: MEBRA: Multiobjective Evolutionary-Based Risk Assessment. IEEE Computational Intelligence Magazine 4, 29–36 (2009)
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point. In: Foundations of Genetic Algorithms: FOGA 2009, pp. 87–102 (2009)
Coello, C.A.C., Lamont, G.B.: Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore (2004)
Corne, D., Knowles, J.: Techniques for Highly Multiobjective Optimization: Some Non-Dominated Points are Better Than Others. In: Proc. of 2007 Genetic and Evolutionary Computation Conference, pp. 773–780 (2007)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proc. of 2002 IEEE Congress on Evolutionary Computation, pp. 825–830 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L.C., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)
Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-Objective Optimization: An Engineering Design Perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)
Hughes, E.J.: Evolutionary Many-Objective Optimization: Many Once or One Many? In: Proc. of 2005 IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)
Hughes, E.J.: MSOPS-II: A General-Purpose Many-Objective Optimizer. In: Proc. of 2007 IEEE Congress on Evolutionary Computation, pp. 3944–3951 (2007)
Ishibuchi, H., Hitotsuyanagi, Y., Nojima, Y.: Scalability of Multiobjective Genetic Local Search to Many-Objective Problems: Knapsack Problem Case Studies. In: Proc. of 2008 IEEE Congress on Evolutionary Computation, pp. 3587–3594 (2008)
Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between Single-Objective and Multi-Objective Genetic Algorithms: Performance Comparison and Performance Measures. In: Proc. of 2006 IEEE Congress on Evolutionary Computation, pp. 3959–3966 (2006)
Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Single-Objective and Multi-Objective Formulations of Solution Selection for Hypervolume Maximization. In: Proc. of 2009 Genetic and Evolutionary Computation Conference, pp. 1831–1832 (2009)
Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of Scalability Improvement Attempts on the Performance of NSGA-II for Many-Objective Problems. In: Proc. of 2008 Genetic and Evolutionary Computation Conference, pp. 649–656 (2008)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)
Jeong, S., Hasegawa, S., Shimoyama, K., Obayashi, S.: Development and Investigation of Efficient GA/PSO-HYBRID Algorithm Applicable to Real-World Design Optimization. IEEE Computational Intelligence Magazine 4, 36–44 (2009)
Jin, Y., Sendhoff, B.: A Systems Approach to Evolutionary Multiobjective Structural Optimization and Beyond. IEEE Computational Intelligence Magazine 4, 62–76 (2009)
Khara, V., Yao, X., Deb, K.: Performance Scaling of Multi-Objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)
Knowles, J.: Closed-loop Evolutionary Multiobjective Optimization. IEEE Computational Intelligence Magazine 4, 77–91 (2009)
Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-Objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)
Rudolph, G., Naujoks, B., Preuss, M.: Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 36–50. Springer, Heidelberg (2007)
Sato, H., Aguirre, H.E., Tanaka, K.: Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007)
Singh, H., Isaacs, A., Ray, T., Smith, W.: A Study on the Performance of Substitute Distance Based Approaches for Evolutionary Many Objective Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 411–420. Springer, Heidelberg (2008)
Sülflow, A., Drechsler, N., Drechsler, R.: Robust Multi-Objective Optimization in High Dimensional Spaces. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 715–726. Springer, Heidelberg (2007)
Tan, K.C., Khor, E.F., Lee, T.H.: Multiobjective Evolutionary Algorithms and Applications. Springer, Berlin (2005)
Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)
Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 125–148 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, Computer Engineering and Networks Laboratory (TIK), Department of Electrical Engineering, ETH, Zurich (2001)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)
Zou, X., Chen, Y., Liu, M., Kang, L.: A New Evolutionary Algorithm for Solving Many-Objective Optimization Problems. IEEE Trans. on Systems, Man, and Cybernetics: Part B - Cybernetics 38, 1402–1412 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y. (2010). Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-15871-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15870-4
Online ISBN: 978-3-642-15871-1
eBook Packages: Computer ScienceComputer Science (R0)