Nothing Special   »   [go: up one dir, main page]

Skip to main content

Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

This work proposes a method to control the dominance area of solutions in order to induce appropriate ranking of solutions for the problem at hand, enhance selection, and improve the performance of MOEAs on combinatorial optimization problems. The proposed method can control the degree of expansion or contraction of the dominance area of solutions using a user-defined parameter S. Modifying the dominance area of solutions changes their dominance relation inducing a ranking of solutions that is different to conventional dominance. In this work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking caused by contracting and expanding the dominance area of solutions and its impact on the search performance of a multi-objective optimizer when the number of objectives, the size of the search space, and the complexity of the problems vary. We show that either convergence or diversity can be emphasized by contracting or expanding the dominance area. Also, we show that the optimal value of the area of dominance depends strongly on all factors analyzed here: number of objectives, size of the search space, and complexity of the problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  3. Purshouse, R.C., Fleming, P.J.: Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16–30. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: Proc. 2005 IEEE Congress on Evolutionary Computation, vol. 1, September, pp. 222–227. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  5. Aguirre, H., Tanaka, K.: Working Principles, Behavior, and Performance of MOEAs on MNK-Landscapes. European Journal of Operational Research, Special Issue on Evolutionary Multi-Objective Optimization (in press) (Sep. 2006)

    Google Scholar 

  6. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  7. Ikeda, K., Kita, H., Kobayashi, S.: Failure of Pareto-based MOEAs: Does Non-dominated Really Mean Near to Optimal? In: Proc. 2001 IEEE Congress on Evolutionary Computation, vol. 2, pp. 957–962. IEEE, Los Alamitos (2001)

    Chapter  Google Scholar 

  8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001 (2000)

    Google Scholar 

  9. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Proc. of 5th Intl. Conf. on Parallel Problem Solving from Nature (PPSN-V), pp. 292–301 (1998)

    Google Scholar 

  10. http://www.tik.ee.ethz.ch/~zitzler/testdata.html

  11. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

    Google Scholar 

  12. Knowles, J., Corne, D.: On Metrics for Comparing Non-dominated Sets. In: Proc. 2002 IEEE Congress on Evolutionary Computation, pp. 711–716. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  13. Sato, H., Aguirre, H., Tanaka, K.: Local Dominance Using Polar Coordinates to Enhance Multi-objective Evolutionary Algorithms. In: Proc. 2004 IEEE Congress on Evolutionary Computation, vol. 1, pp. 188–195. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  14. Veldhuizen, D.A.V., Lamont, G.B.: On Measuring Multiobjective Evolutionary Algorithm Performance. In: Proc. IEEE 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211. IEEE, Los Alamitos (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sato, H., Aguirre, H.E., Tanaka, K. (2007). Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics