Abstract
We present a new counterexample-guided abstraction refinement scheme. The scheme refines an over-approximation of the set of possible traces. Each refinement step introduces a finite automaton that recognizes a set of infeasible traces. A central idea enabling our approach is to use interpolants (assertions generated, e.g., by the infeasibility proof for an error trace) in order to automatically construct such an automaton. A data base of interpolant automata has an interesting potential for reuse of theorem proving work (from one program to another).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)
Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis. In: POPL 2002, pp. 1–3. ACM, New York (2002)
Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI 2007, pp. 300–309. ACM, New York (2007)
Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer, Heidelberg (2007)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)
Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier, Grenoble, France, March 21 (1978)
Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications, ch. 10, pp. 303–342. Prentice-Hall, Englewood Cliffs (1981)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM, New York (1977)
Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Automated Software Engineering 6(1), 69–95 (1999)
Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)
Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)
Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL 2004, pp. 232–244. ACM, New York (2004)
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002, pp. 58–70. ACM, New York (2002)
Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)
Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)
Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 98–112. Springer, Heidelberg (2001)
McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)
Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)
Segelken, M.: Abstraction and counterexample-guided construction of omega -automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344. IEEE Computer Society, Los Alamitos (1986)
Wies, T.: Symbolic Shape Analysis. Ph.D Thesis, Albert-Ludwigs-Universität, Freiburg, Germany (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heizmann, M., Hoenicke, J., Podelski, A. (2009). Refinement of Trace Abstraction. In: Palsberg, J., Su, Z. (eds) Static Analysis. SAS 2009. Lecture Notes in Computer Science, vol 5673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03237-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-03237-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03236-3
Online ISBN: 978-3-642-03237-0
eBook Packages: Computer ScienceComputer Science (R0)