Nothing Special   »   [go: up one dir, main page]

Skip to main content

Refinement of Trace Abstraction

  • Conference paper
Static Analysis (SAS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5673))

Included in the following conference series:

Abstract

We present a new counterexample-guided abstraction refinement scheme. The scheme refines an over-approximation of the set of possible traces. Each refinement step introduces a finite automaton that recognizes a set of infeasible traces. A central idea enabling our approach is to use interpolants (assertions generated, e.g., by the infeasibility proof for an error trace) in order to automatically construct such an automaton. A data base of interpolant automata has an interesting potential for reuse of theorem proving work (from one program to another).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for software model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 158–172. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis. In: POPL 2002, pp. 1–3. ACM, New York (2002)

    Google Scholar 

  3. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: PLDI 2007, pp. 300–309. ACM, New York (2007)

    Google Scholar 

  4. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse d’État ès sciences mathématiques, Université Joseph Fourier, Grenoble, France, March 21 (1978)

    Google Scholar 

  7. Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.) Program Flow Analysis: Theory and Applications, ch. 10, pp. 303–342. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977, pp. 238–252. ACM, New York (1977)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Automated Software Engineering 6(1), 69–95 (1999)

    Article  MATH  Google Scholar 

  10. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL 2004, pp. 232–244. ACM, New York (2004)

    Google Scholar 

  13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002, pp. 58–70. ACM, New York (2002)

    Google Scholar 

  14. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by abstraction. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 98–112. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. McMillan, K.L.: Interpolation and sat-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 268–283. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Segelken, M.: Abstraction and counterexample-guided construction of omega -automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344. IEEE Computer Society, Los Alamitos (1986)

    Google Scholar 

  23. Wies, T.: Symbolic Shape Analysis. Ph.D Thesis, Albert-Ludwigs-Universität, Freiburg, Germany (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heizmann, M., Hoenicke, J., Podelski, A. (2009). Refinement of Trace Abstraction. In: Palsberg, J., Su, Z. (eds) Static Analysis. SAS 2009. Lecture Notes in Computer Science, vol 5673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03237-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03237-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03236-3

  • Online ISBN: 978-3-642-03237-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics