
Refinement of Trace Abstraction

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski

University of Freiburg, Germany

Abstract. We present a new counterexample-guided abstraction refine-
ment scheme. The scheme refines an over-approximation of the set of
possible traces. Each refinement step introduces a finite automaton that
recognizes a set of infeasible traces. A central idea enabling our approach
is to use interpolants (assertions generated, e.g., by the infeasibility proof
for an error trace) in order to automatically construct such an automa-
ton. A data base of interpolant automata has an interesting potential for
reuse of theorem proving work (from one program to another).

1 Introduction

The automatic refinement of abstraction is an active research topic in static
analysis [1,3,4,5,6,7,8,9,10,11,13,12,15,16,18]. It is widely agreed that the calls to
a theorem prover, as used in existing methods for the construction of a sequence
of increasingly precise abstractions, represent an obstacle to scalability. The
problem is accentuated when costly decision procedures are employed to deal
with arrays and heaps [19,20,23]. One way to address this obstacle is to increase
the reuse of theorem work [11,13,12,18]. The question is in what form one should
combine the results of theorem prover calls, and in what form they should be
presented and stored.

Let us informally investigate the shortcomings inherent to the usage of
theorem provers in the classical counterexample-guided abstraction refinement
scheme (as, e.g., in [1,2,5,12,13,15]).

– In a first step, the theorem prover is called to prove the infeasibility of an
error trace (in case it is a spurious counterexample). The corresponding
unsatisfiability proof is then used for nothing but guessing the constituents
of the new abstraction. If, as in [12,15], the unsatisfiability proof is used to
generate interpolants which contain valuable information about the reason
of infeasibility, then these are cannibalized for their atomic conjuncts.

– In a second step, the theorem prover is called to construct the transformer
for the new abstraction; this step does not exploit the theorem proving work
invested in the first step; in fact, the subsequent analysis of the new abstrac-
tion realizes a second proof of the infeasibility of the previous error trace.

– The theorem prover constructs the transformer for each new abstraction from
scratch (at least on the part of the transformer’s domain that has changed).

– The theorem proving work starts for each new program from scratch. This
means all theorem proving work is done on-line, whereas ideally, most if not
all of it should be done off-line, i.e., in a pre-processing step.

J. Palsberg and Z. Su (Eds.): SAS 2009, LNCS 5673, pp. 69–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



70 M. Heizmann, J. Hoenicke, and A. Podelski

In this paper, we present a new counterexample-guided abstraction refinement
scheme. The scheme refines an over-approximation of the set of possible traces
(in contrast to existing schemes which refine an over-approximation of the set
of possible states). Each refinement step introduces a finite automaton that
recognizes a set of infeasible traces. Such a trace automaton uses the alphabet of
statements ; each word over this alphabet is a trace. A central idea enabling our
approach is to use interpolants (assertions generated, e.g., by the infeasibility
proof for an error trace) in order to automatically construct such an automaton.
The resulting interpolant automaton accepts not only the given error trace but
many other (in general infinitely many) infeasible traces of varying shape and
length.

The idea of using interpolants for the construction of an automaton overcomes
a major difficulty in the construction of automata for the approximation of pos-
sible traces. Existing constructions (e.g., in [14,21] for hybrid systems) are based
on ad hoc criteria; while the resulting methods succeed on several interesting ex-
amples, they are not general or complete. We also note a difference in the kind of
alphabets used. In [14,21], the alphabet consists of action labels (or edge labels)
defined by the input program (hybrid system), and the infeasibility property is
specific to that program. In contrast, our notion of infeasibility depends solely
on the programming language semantics.

One perspective opened by our work is a refinement loop that queries a
database of interpolant automata; if there exists one that accepts the submitted
error trace (which means that the error trace is not feasible), then the interpolant
automaton gets added as another component to the trace abstraction. In this
scenario, the interpolant automata can be constructed off-line (automatically, or
manually using interactive verification methods).

2 Example

The correctness of the annotated program P in Fig. 1 is defined by the validity
of its assertions. The correctness can be stated equivalently with the help of the
automaton AP depicted in Fig. 2, the so-called program automaton. The tran-
sition graph of AP is the control flow graph of P where assertions are translated
to edges to an error state.

The program automaton recognizes a set of words over the alphabet of state-
ments (statements are framed in order to stress that they are used as letters of
an alphabet). Each accepted word is a trace along a path in the control flow
graph. The correctness of the annotated program P is expressed by the fact
that all such traces are infeasible (which means that there is no valid execution
leading from the initial location to the error location).

We next describe how our refinement scheme will generate a sequence of trace
abstractions and, finally, prove the correctness of P . Generally, each trace ab-
straction is a tuple of automata (A1 . . .An) over the alphabet of statements. An
automaton in the tuple recognizes a subset of infeasible traces. This subset is
used to restrict the set of traces recognized by the program automaton.


