Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Information-Theoretic Measure to Control the Robustness-Sensitivity Trade-Off for DMFFD Point-Set Registration

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

An essential component of many medical image analysis protocols is the establishment and manipulation of feature correspondences. These image features can assume such forms spanning the range of functions of individual or regional pixel intensities to geometric structures extracted as a preprocessing segmentation step. Many algorithms focusing on the latter set of salient features attempt to reduce these structures to such geometric primitives as surfaces, curves and/or points for correspondence-based study. Although the latter geometric primitive forms the basis of many of these algorithms, unrealistic constraints such as assumptions of identical cardinality between point-sets hinder general usage. Furthermore, the local structure for certain point-sets derived from segmentation processes is often ignored. In this paper, we introduce a family of novel information-theoretic measures for pooint-set registration derived as a generalization of the well-known Shannon entropy known as the Havrda-Charvat-Tsallis entropy. This divergence measure permits a fine-tuning between robustness and sensitivity emphasis. In addition, we employ a directly manipulated free-form deformation (DMFFD) transformation model, a recently developed variant of the well-known FFD transformation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tustison, N.J., Avants, B.B., Gee, J.C.: Directly manipulated free-form deformation image registration. IEEE Trans. Image Process. 18(3), 624–635 (2009)

    Article  MathSciNet  Google Scholar 

  2. Tustison, N.J., Awate, S.P., Gee, J.C.: Information-theoretic directly manipulated free-form deformation labeled point-set registration. Insight Journal (2009)

    Google Scholar 

  3. Tsin, Y., Kanade, T.: A correlation based approach for robust point-set registration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 558–569. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Singh, M., Arora, H., Ahuja, N.: Robust registration and tracking using kernel density correlation. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshop, pp. 174–182 (2004)

    Google Scholar 

  5. Jian, B., Vemuri, B.: A robust algorithm for point set registration using mixture of Gaussians. In: Proceedings of the International Conference on Computer Vision, pp. 1246–1251 (2005)

    Google Scholar 

  6. Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic Point Matching. In: Handbook of Mathematical Models in Computer Vision, pp. 205–220. Springer, Heidelberg (2005)

    Google Scholar 

  7. Wang, F., Vemuri, B., Rangarajan, A., Eisenschenk, S.: Simultaneous nonrigid registration of multiple point sets and atlas construction. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 2011–2022 (2008)

    Article  Google Scholar 

  8. Basu, A., Harris, I., Hjort, N., Jones, M.: Robust and efficient estimation by minimizing a density power divergence. Biometrika 85, 549–559 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Havrda, M., Charvat, F.: Quantification method of classification processes: concept of structural alpha-entropy. Kybernetica 3, 30–35 (1967)

    MATH  Google Scholar 

  10. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52, 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gell-Mann, M., Tsallis, C.: Nonextensive Entropy. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  12. Burbea, J., Rao, C.R.: On the convexity of some divergence measures on entropy functions. IEEE Transactions on Information Theory 28, 489–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Endres, D., Schindelin, J.: A new metric for probability distributions. IEEE Transactions on Information Theory 49, 1858–1860 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Majtey, A., Lamberti, P., Plastino, A.: A monoparametric family of metrics for statistical mechanics. Physica A 344, 547–553 (2004)

    Article  MathSciNet  Google Scholar 

  15. Vincent, P., Bengio, Y.: Manifold parzen windows. In: Thrun, S., Becker, S., Obermayer, K. (eds.) Advances in Neural Information Prcessing Systems, pp. 825–832. MIT Press, Cambridge (2003)

    Google Scholar 

  16. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  17. Rose, K.: Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE 86(11), 2210–2239 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tustison, N.J., Awate, S.P., Song, G., Cook, T.S., Gee, J.C. (2009). A New Information-Theoretic Measure to Control the Robustness-Sensitivity Trade-Off for DMFFD Point-Set Registration. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics